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Abstract

The goal of this thesis is to develop sufficient dimension reduction methods
in regressions via a minimum discrepancy approach. The thesis includes two

main parts.

Part I examines regressions for a single population. A family of dimen-
sion reduction methods is developed by minimizing a quadratic objective
function. An optimal member of this family called optimal inverse regres-
sion estimation (Optimal IRE) is proposed, along with inference methods
and a computational algorithm. Optimal IRE is optimal in two respects: Its
estimated basis of the central dimension reduction subspace (Cook 1994) is
asymptotically efficient and its test statistic for dimension has an asymptotic
chi-squared distribution. Current methods like sliced inve}"se regression (SIR;
Li 1991) and the weighted chi-squared test (WCT; Bura and Cook 2001b)
belong to a sub-optimal class of this family. Another member of this sub-
optimal class—simple inverse regression estimation (Simple IRE) proposed in
this thesis—often performs better than SIR and WCT. Comparison of these

methods is reported through simulation studies.



Part II focuses on sufficient partial dimension reduction in regression
across multiple subpopulations. We rederive and extend partial sliced inverse
regression (partial SIR; Chiaromonte, Cook and Li 2002) by the minimum
discrepancy approach. A new method, general partial SIR, is proposed in
this thesis, which removes the restriction in partial SIR that the predictor
covariances matrices are constant across subpopulations. This extension sig-

nificantly expands the applicability of dimension reduction methodologies.
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Chapter 1

Introduction

Data are indispensable in modern life. Important information is hiding in
the data. With the development of technology, more measurements can be
collected with higher accuracy than ever before. As information technology
flourishes, people are overwhelmed by huge amounts of data. Meanwhile even
with so much data, when we put them in a high dimensional space, they are
still isolated and sparse. This makes many techniques that work fairly well
in lower dimensions lose their edge in high dimensions. Even with unlimited
computing power, we still have to address the central issue: how to get the
most information from th.e data without letting details obstruct our eyes.
Help is available from dimension reduction techniques that summarize the
data in a much lower dimensional space while preserve as much information
as possible. Dimension reduction makes visualization of the data become
possible. A statistical model in the lower dimensional space is often far more

parsimonious.



While people agree on its importance, they have different understand-
ings about dimension reduction. Many dimension reduction methods have
been developed. Principal components analysis, factor analysis, indepen-
dent components analysis, projection pursuit, Fourier transformation, and
wavelets are among a long list of dimension reduction tools. These methods
try to find the “most important” features or patterns in the data. In this
thesis, we employ the distinct but related notion of sufficient dimension re-

duction in regression.

Consider a typical regression of a response Y on a vector X of p predictors.
Generally the object of interest is the conditional distribution of Y|X, which
in many cases is identical to the conditional distribution of Y given ¢ < p
linear combinations of X, n"X = (n,,...,1,)7X, where n; € R”. Letting
PA be the orthogonal projection operator onto the space spanned by the
columns of a matrix A, we can restrict our attention to a lower dimensional
projection Py»pX without loss of information on Y|X. We call this sufficient
dimension reduction. Cook (1994) formulated sufficient dimension reduction
via the concept of the central dimension reduction subspace (CS), which is

the intersection of all spaces & such that
Y 1 X|PsX,

where 1L represents independence. Let Sy|x denote the central subspace. It
is easy to see that a linear transformation of X leads to a linear transforma-
tion of Sy|x. Suppose Syx is d-dimensional with a basis 8 = (8,,...,8,).
We call these ﬂfX sufficient predictors. According to the above definition,

given Ps, X, X is independent of ¥, which means that PsyxX carries



all the information about Y that is available from X. Another unique fea-
ture of sufficient dimension reduction is that it is model-free. We do not
assume any particular parametric or nonparametric model for Y|X when we
are considering dimension reduction. Naturally, when modeling is necessary,
we may construct models based on the sufficient predictors after we find the

CS. Model construction is not within the scope of this thesis.

1.1 Central Dimension Reduction Subspace

Methods for estimation of the central subspace include sliced inverse regres-
sion (SIR; Li 1991), sliced average variance estimation (SAVE; Cook and
Weisberg 1991), graphical regression (Cook 1994, 1998), and parametric in-
verse regression (Bura and Cook 2001a). Among them, SIR is perhaps the
most widely used method. Let Z = Cov(X)~2(X — E[X]) denote the stan-
dardized predictor. Under mild conditions on the marginal distribution of
the predictor vector, Span(Cov(E[Z|Y])) € Syjz. SIR uses a sample ver-
sion of Cov(E[Z|Y]) as a kernel matrix, where columns are intended to span
Sy|z in the population. Then, SIR produces a spectral decomposition of the
kernel matrix, where the sum of the smallest eigenvalues is utilized to con-
struct test statistics for estimating the dimension of Sy|z. Suppose we decide
dim(Sy|z) = d. Then the d eigenvectors corresponding to the d largest eigen-
values constitute an estimate of a basis of Sy |z, since the space spanned by
these eigenvectors is the subspace “closest” to the kernel matrix’s columns.

We call this estimation approach the spectral decomposition approach. Then



an estimate of Sy;x can be obtained by simple linear transformation. The
mild conditions under which SIR works best are well-studied in the litera-
ture. Bura and Cook (2001b) proposed the weighted chi-squared test (WCT),
which extended SIR for more general situations, while still using the same

test statistics. We will discuss SIR and WCT in detail in later chapters.

A simple example using SIR

We consider a simple example using SIR. Let X = (X1, X, ..., X5) be a 5-
dimensional multivariate normal random vector with zero mean and identity

covariance matrix. Suppose the response Y is generated according to the

model:
Y = exp[— (X1 + X2 + X3)] +¢,

where € is a standard normal variable that is independent of X. In this case,

the central subspace is 1-dimensional with 8; = (1,1,1,0,0)%, since
Y 1X|8TX.

We generated 400 data points according to the model. SIR detected one

sufficient predictor: The estimated sufficient predictor is
81X = (0.57,0.59,0.57, —0.05,0.02)TX,

which has a sample correlation of 0.9987 with the true sufficient predictor
,BTX. SIR. did a good job in this example. A plot of Y versus the estimated

AT
sufficient predictor 8, X is shown in Figure 1.1.

In Chapter 5 we show that SIR’s spectral decomposition approach is a

special case of a minimum discrepancy approach, which is in the form of a
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Figure 1.1: Summary plot from a simple example using SIR.

quadratic inference function. In this thesis, we develop a class of dimension
reduction methods via the minimum discrepancy approach. We call it the
MDA family. SIR belongs to this family. Is SIR the optimal member? The
answer is no! We propose a new method, optimal inverse regression estima-
tion (Optimal IRE), which is optimal in terms of asymptotic efficiency and
its test statistic for dimension has an asymptotic chi-squared distribution. It
turns out that SIR belongs to a sub-optimal class of the MDA family. Even
within this sub-optimal class, another member simple inverse regression es-

timation (Simple IRE), which is also proposed in this thesis, often has better



performance than SIR.

1.2 Partial Central Dimension Reduction Sub-
space

Later we change our focus to the multiple subpopulation case. Suppose W
is a random variable which indicates the subpopulation. SIR may do well
with continuous or many-valued predictors, but it fails to deal with this
situation. Chiaromonte, Cook, and Li (2002; herein after CCL) extended
sufficient dimension reduction to regressions across multiple subpopulations.
Parallel to the central dimension reduction subspace, they define the partial

central subspace (PCS) as the intersection of all spaces S such that
Y I X|(PsX,W).

CCL proposed a methodology, partial SIR, to estimate the PCS. Let us look

at one example to fix the idea.

Lean Body Mass Regression

We revisit one of the regressions discussed by CCL. For n = 202 athletes at
the Australian Institute of Sport, consider the regression of lean body mass
L on p = 5 continuous or many-values predictors, the logarithms of height,
weight, red cell count, white cell count and hemoglobin, represented by X
and gender indicated by W = m or f. Partial SIR estimated the PCS as
1-dimensional. A plot of L versus the estimated sufficient predictor BTX

is shown in Figure 1.2. The ordinary least squares fits are shown for males



and females as visual aids. The interpretation of the plot is that while males
and females have different regressions they both depend on one and the same

linear combination of the predictors X.

115

LBM
85

55

25

Figure 1.2: Summary plot from application of partial SIR to the lean body

mass regression. o males. o females.

»However, partial SIR has an important limiting condition: the predic-
tors must have the same covariance structure across subpopulations; that is,
Cov(X|W) must be constant. Since there is no big difference between the co-

variance matrices of X for males and females in the above regression, partial



SIR works fine. But usually we do not expect homogenous subpopulation
covariances. Therefore, this restriction should not be neglected in practice.
In this thesis, we develop dimension reduction methods for heterogenous
subpopulations via the minimum discrepancy approaéh. We propose a new
method, general partial SIR (GP.SIR), to estimate the partial central sub-
space. GP.SIR only requires the same conditions as SIR does. Therefore, we
can use GP.SIR in far more situations than partial SIR, which expands sub-
stantially the application domain of sufficient dimension reduction. When
all subpopulations share the same covariance matrix, partial SIR arises nat-
urally as a special case. When there is only one population, GP.SIR reduces

to SIR.

1.3 Outline of the Thesis

This thesis includes two main parts. Part I investigates sufficient dimension
reduction methods in single population regression. Chapter 2 reviews suffi-
cient dimension reduction via the concept of the central dimension reduction
subspace, where dimension reduction and inverse regression are connected,
setting the stage for developing methodologies by a minimum discrepancy ap-
proach. An MDA family of dimension reduction methods is proposed there.
Chapter 3 develops an optimal method—Optimal IRE. Within this MDA
family, Chapter 4 outlines a sub-optimal class that includes SIR, WCT, and
Simple IRE, which are discussed in subsequent chapters. Comparisons be-

tween SIR, WCT, Simple IRE; and Optimal IRE are reported in Chapter 8.



In Part II we shift our focus to dimension reduction in regression across
multiple subpopulations. Chapter 9 reviews the frame work of partial dimen-
sion reduction via the partial central dimension reduction subspace, which
parallels the central subspace discussed in Chapter 2. Then, we propose a
new method—general partial SIR, of which partial SIR is a special case. In-
ference about partial dimension reduction is addressed in Chapter 10. Partial
SIR and general partial SIR are compared by simulations and a real example.

At the end of the thesis, we briefly discuss a plan for future research.



Part 1

Dimension Reduction for
Regression in a Single

Population
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Chapter 2

Sufficient Dimension Reduction

In a regression of Y on X € R?, usually we consider the conditional distri-
bution of Y'|X. Common practice is to model the relation between ¥ and X

as
Y = f0fX,...,n5X,¢) (2.1)

where 17, € RP, and ¢ is an error term that is independent of X. The func-
tion f(-) can be estimated either by a parametric model or nonparametric
smoothing techniques. There are two overarching questions: one is how to
estimate n = (14, . . ,'r)d),rthe other is how to épecify f(+). Often we solve
the problem iteratively, by assuming we know the answer for one question
and then estimating the answer for the other. For example, projection pur-
suit regression (Friedman and Stuetzle 1981) estimates the regression surface

by a sum of univariate functions:
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where f;(-)’s can be empirically determined by assuming that they belong to
a particular family, say, quadratic functions. Recursive partitioning regres-
sion depends on using the 777 X’s to split the predictor space and to estimate
the function within each space. However, when X is high dimensional, we
encounter the curse of dimensionality. The data are so sparse in any region
of interest that it is very difficult to estimate 77, even with assumption of a
function form. Meanwhile, the estimation process is so heavily data-driven

that often some n,’s found are mainly artifacts.

In this thesis, we directly consider Span(n), rather than n, without as-
suming any statistical model. More generally our analysis does not rely on a
particular function like (2.1). Instead, we consider conditional independence
between X and Y. We focus on the intersection of all subspaces S C R? such

that
Y I X|PsX (2.2)

where Il indicates independence. When the intersection itself satisfies (2.2),
it is called the central dimension reduction subspace or central subspace (CS)
of the regression and denoted as Syx. Therefore, we can focus on a lower
dimensional projection P, X instead of X without losing any information
on the regression. For background on the existence of the CS and related
issues, see Cook (1998, Ch. 6). The dimension d = dim(Syx) is called
the structural dimension of the regression. It is easy to see that a linear
transformation of the predictor X leads to a linear transformation of the CS.

For example, define the standardized predictor Z = 2_%(X — E[X]), where
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3 = Cov(X). Then,
Syix = T iSyz. (2.3)

Therefore, without loss of generality, we may work on the Z-scale and trans-

form back to the original X-scale when necessary.

2.1 Inverse Regression

We make one important assumption about the distribution of X: The lin-

earity condition requires that the standardized predictor Z satisfies
E[Z\PSHZZ] = Ps,,, 2.

This condition connects the central subspace with the inverse regression of
Z on Y. When it holds, Span{E[Z|Y]} C Syz (Li 1991). Based on this
result, we are able to estimate at least part of Syx. When Y is discrete,
it is easy to construct sample versions of E[X|Y]. When Y is continuous,
we consider a discrete version Y of Y by partitioning the range of Y. One
important fact is that Sf/p{ C Syjx. When the number of values that Y may
take is reasonable large, we typically have Sf,|x = Sy|x. Thus, without loss
of generality, we assume Y is discrete and has a finite support {1,2,...,h}

unless specified otherwise. A value y of Y is called a slice.

Let us define a target space

S = @ Span{¢,}, (2.4)
where

¢, = SHEX|Y = y] - E[X]) = £7E[Z|y],
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and @ indicates the sum of subspaces (Vi ® Vo = {v; + v2|v1 € V3,03 € Vo}).
When the linearity condition holds, S is a subset of Syx. We often take

this a step further and assume the coverage condition:
@p_,Span{E[Z|Y =y]} = Syz.

Then, S¢ = Sy|x. Let B denote a basis of S¢, where 3 is a p X d matrix. An
estimate of 8 provides an estimate of a basis of the CS. Throughout this the-
sis, when an basis of the CS or the partial central subspace (cf. Section 1.2)
is involved, we implicitly assume the coverage condition. Inference about S¢

itself does not require the linearity condition or coverage condition.

By definition, for each y, there exists a vector «, such that §, = B,.
Define

EE (ﬁla'“agh) :ﬂ’Ya

where
Y=Yy, M)
Let

f = (flafZa"'afh)T (25)
where f, = Pr(Y =y), and let g = f. It is easy to see that

which we call the intrinsic location constraint. We notice immediately that
the parameterization (3, ) is not identifiable, but B+ is identifiable. How-

ever, this is not an issue since any basis 8 suffices to specify the CS. When
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necessary, we may impose constraints on (3, «) to make the parameterization
unique. For illustration, we describe one unique reparameterization here. Let
B = (B8], BT, where B, € R¥*¢, B, € RP~9*¢. Without loss of generality,
we assume that 3, is nonsingular. Otherwise, we only need to change the
order of the elements in X. Then,
By = oy 7= e B
Bs B.67"

Therefore, we can impose 8 = (I;,8*7)T. Now we have new parameters:
B* € Re—d9)xd and 4 € R¥*h, This parameterization brings full rank Jaco-
bian matrices and open parameter spaces, which is helpful in justification of
some theoretical results. At the same time, any reparameterization does not
affect the estimation of S¢ or the estimate’s asymptotic properties. There-
fore, we still use the overparameterized setting like (3,) throughout this

thesis and only visit the constrainted setting when necessary.

2.2 Minimum Discrepancy Approach

We now start out to develop dimension reduction methods via a minimum
discrepancy approach. Suppose we have a sample of total size n for (X,Y),
among which n, points have Y = y. Let X,, be the total average of X, and
let X,. be the average of the n, points with ¥ = y. Let

f=(2,. .. My

n n
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g= \/i , and let 3 denote the sample covariance. The sample version of £,

is

£, = ¥ (X, -X.)=%?Z,,
w1 _
where Zy. =X *(Xy. —X..). Let
& = (éla'--aéh)' (27)

We know that the columns of £ span a d-dimensional subspace. It is natural
to estimate this subspace with a d-dimensional subspace that is closest to the
columns of € that is &’s moment estimate. There are many ways to define

“closeness”. In this thesis, we consider quadratic discrepancy functions:
Fy(B,C) = (vec(€M,) — vec(BC))TV,(vec(éM,) — vec(BC)),

where M,, € R V, € RPXPl is a positive definite matrix, B € RP*¢,
and C € R¥!, The matrix M, decides how we organize the columns of €.
Both M, and V,, can be fixed or stochastic. The value of B € RP*¢ that
minimizes the function provides an estimate of a subset of Span(3). The
minimum value E, of the function F,,, can be used to construct a test statis-
tic for the hypothesis d = m. Therefore, one pair of (M,, V,,) corresponds
to one dimension reduction method. We call these methods the MDA fam-
ily. Obviously, given (M,,, V,,), solutions of this minimization are not unique
because of the over-parameterization of the setting. However, this is not an

issue since we are searching for Span(3) not 3 itself.

One way to estimate Span(83) is by letting M, = I}, and V,, = diag{Vpy}

a positive definite block diagonal matrix that converges to V in probability.
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Consider

Fy(B,C) = (vec(é) - VeC(BC))TVn(vec(é) — vec(BC))
= Z(Ey - BCy)TVny(éy - BC,) (2.8)

Y

where C, € R%. In Section 3.1 we will show Vn(vec(€D;) — vec(ByDy))
converges to a normal random vector with zero mean and covariance matrix
I'*, where I'* € RPP*Ph i5 singular because of the intrinsic location constraint.

Thus, we rewrite (2.8) as

FyB,C) = (vec(€D;) — vec(BC))T(D;' @ I)V,(D;' 1)

~ ~

(vec(&Dy) — vec(BC)),

where C = CD;, and D; is the diagonal matrix with elements of f on the
diagonal. Let
V' = (D' e V(D; ' ® I,

and let A* denote the Jacobian matrix for this discrepancy function

AF = (Bvec(B(NZ‘) avec(Bé))

~

dvec(B) ' 9vec(C)

(B:,B,é:'YDf)
Then, the test statistic nE} has an asymptotic chi-squared distribution only

when
rururs =rur, (2.9)
where U = V* — V*A*(A*TV*A*)~ A*TV* (Shapiro 1986).

Unfortunately, generally condition (2.9) is not satisfied, i.e. there may

not exist such a V for a particular regression of ¥ on X. Even when such
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a 'V exists, we need an estimate of A* that includes 8. But the estimation
of B is the very reason we are looking for V in the first place. We may con-
sider some iterative scheme; however this may unnecessarily complicate the
straightforward idea. Therefore, the discrepancy function (2.8) is not opti-
mal generally. We call the methods using (2.8) the sub-optimal class within
the MDA family. One prominent member of this class is SIR. In Chapter 5,
we rederive SIR in the minimum discrepancy approach. Even in this sub-
optimal class, SIR is not the best method. Taking into account variation in
Cov(XY'), we propose simple inverse regression estimation (Simple IRE) in
Chapter 7. Simple IRE often beats SIR when we encounter large variation

among the conditional covariances of X|Y".

Is there an optimal discrepancy function we can use for estimation of the

CS? The answer is yes. We know
¢f = £D;1 =0, (2.10)

where 1 is a vector with all elements being 1. This is a sample version of
intrinsic location constraint (cf. (2.6)). Since one linear combination of the
columns of é D; is always a null vector that does not provide any information
about S¢ (cf. (2.4)), an efficient objective function should examine only the
orthogonal complement of Span(1). Therefore, instead of £ we may consider
& = EDfA in the construction of discrepancy functions, where A € Rh*(A=1)

such that ATA =1,_, and AT1 = 0. Thus, & converges to
Bv = pvD:A (2.11)

in probability, where v = yDsA. We prove the asymptotic normality of
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Vn(vee(¢) — vec(Br)) in Section 3.1:
Vn( vec(C) — vec(Bv)) A Normal(0, T';),

where Ty € RP(A-DxP(:=1) is 4 nonsingular matrix. Now we construct a

discrepancy function:
FyB,C) = (vec(¢) — vec(BC))TV,(vec(¢) — vec(BC)),

where B € RP*¢, C € R¥*(*-1) and V,, € ReA-Dxp(h=1) g 5 consistent es-
timate of I‘El. We call the method using this discrepancy fﬁnction optimal
inverse regression estimation (Optimal IRE). Optimal IRE is optimal: Its
test statistic nFy has an asymptotic chi-squared distribution, and its esti-
mate of vec(Bv) is asymptotically efficient. Notice that a function of (38, v)
is uniquely defined only when it is a function of vec(Bv). Borrowing the
terminology from linear models, only functions of vec(Br) are estimable.
The asymptotic efficiency we consider here means that the estimate of any
function of vec(Bv) that is obtained from this particular choice of V has
smallest asymptotic variance among estimates from all possible V. See Sec-
tion 3.2 for the details. Asymptotic properties and computation of Optimal
IRE will be addressed in Chapter 3.



Chapter 3

Optimal Inverse Regression

Estimation

The essence of inverse regression estimation is to estimate the target space
S¢ by minimizing an appropriate objective function that measures the dis-
crepancy between £ (cf. (2.7)) and the estimated space Span(3). An efficient
discrepancy function should take advantage of the sample intrinsic location
constraint (cf. (2.10)). Therefore, instead of & we consider ¢ = éD;,A in
the construction of discrepancy functions, where A € R**(~1 such that
ATA =1,_; and AT1 = 0. Thus, & converges to Bv = BvyD¢A in probabil-

ity. Let us state a fact and defer its proof until Section 3.1:
Vn(vec(€D;) — vec(BvyDs)) = Normal(0, T*), (3.1)
where I'* € RPA*Ph jg g singular matrix. Then,

Vv vee(&) — vec(Br)) Z Normal(0, T;),

20
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where
I, = (AT@DI(AQI) (3.2)

is nonsingular. Suppose a positive definite matrix V,, is a consistent estimate

of I‘gl. Then, the optimal discrepancy function is
Fy(B,C) = (vec(C) — vec(BC)) 'V, (vec(¢) — vec(BC)), (3.3)

where B € RP*4 C € R¥*(-1, The values of B and C that minimize (3.3)
are the estimates of 8 and v. The discrepancy function (3.3) is optimal in
two respects as we shall see. First, the estimate of vec(Bv) is asymptoti-
cally efficient. Secondly, the test statistic for dimension—sample size times
the minimum discrepancy value— has an asymptotic chi-squared distribu-
tion. We call the method using (3.3) optimal inverse regression estimation
(Optimal IRE). Asymptotic properties and computation will be addressed in

following sections.

3.1 Asymptotic Normality

From the above discussion, we uhderstand that the establishment of the
Optimal IRE discrepancy function hinges on the asymptotic normality of
v vec(€ D;) — vec(BvDy)) and the estimation of the its limiting covariance
matrix. In this section asymptotic normality is proved. Meanwhile, the
limiting covariance matrix I'* is expressed as a covariance matrix of a random
vector. Before we can report the results, some preparation is needed. First,

we define A random variables J, such that Jy, equals 1 if a point is in the y-th
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slice and 0 otherwise, y = 1,2,...,h. Then, E[J,] = f,, where f, = Pr(Y =

y). Also define a random vector
e = (e, ,en)T (3.4)
where the random elements
e, = J, — E[J,] - Z'E[ZJ,], y=1,2,...,h,

are the population residuals from the ordinary least square fit of J, on Z.
Now the asymptotic distribution of v/n( vec(€D;) — vec(8vDy)) is specified
in the following theorem. Since ¢ = éDfA and A is a constant matrix, the

asymptotic normality of /n( vec(¢) — vec(Bv)) is easily obtained.

Theorem 1. Assume that the data (X;,Y;), i =1,...,n, are a simple ran-

dom sample of (X,Y). All notation is as defined previously. Then
Vn(vec(éD;) — vec(ByDx)) 3 Normal(0, T*),

where T* = Cov( vec(E~2ZeT)) € Rov<ph.

Proof:

The strategy to showing asymptotic normality is to decompose v/7( vec(éDt:) —
vec(ByD¢)) as a summation of i.i.d. observations plus a remainder converg-
ing to 0 in probability. Then, by the central limit theorem, we obtain the
desired results. In this decomposition process we need the following lemma
that decomposes the difference between the inverse of a sample covariance

matrix and its population value.
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Lemma 1. Suppose a random vector X has covariance matric 3 > 0. Then,

A

n
27 oml = e Y (22T DB 4 0,(n 7).
=1

Here ¥ is the sample covariance calculated from a sample of size n and

Z= 2—%(){ — E[X]) is the standardized version of X.
Proof:

Note that

j=1
= 073 ) (X — )Xy — @) = T+ Oy(n7H)
i—1
1 ] 1 n 1
= n71%2 Y (Z;Z] —I)22 + Oy(n"7)
i=1
= A,+0, n_%),

where p = E[X], Z; = E‘%(Xj — u) and A, is defined implicitly. Denote

S +n7iD, + Op(n~'). Here D, is an O,(1) random matrix. Since

37 = I, by simple algebra, we have

[N

D, =-X7'A, 37! = -n"187% Y (7,27 -DEh

Therefore,

A1

57 -2 =08 Y (22T - DB 4 Oy(n7Y). O

j=1
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Recall that Xy. is the average of the n, observations in the yth slice and X..

is the grand average of all n observations. Letting p, = E[X,.], u = E[X..],

consider

vn(f&, - f,€,)

= Vnf,E T (X, — X)) - Vf 2, — )

= VAT - =, (1, — 1)+ VAET (X — X)) = fylpy — 1))
+aE ™ = SRy - Xa) — fy(1y — p)]

= VaET =Y (i, — 1)+ VST (K~ Xo) = fy sy — )]
+0,(n"?). (3.5)

By Lemma 1, we have
P owle iy Z (Z;ZT —T)=73 + Op(n7Y).
Therefore, the first term in (3.5) can be simplified as

VAET =Sy - p) = -0 ISTEY (Z2T DBy (i, - p) + Op(n7H)

j=1

= —n"i1%73 Y (2,27 ~DE[ZJ,] + Op(n7E).  (3.6)
j=1
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Meanwhile, letting J,; denote the value of J, for the jth observation, j =

1,2,...,n, we have

K=K = 2301 - X))

_ %Z[(xj — X..)(Jy; — ElJ))]

LD CIIIEARS PAN D (e MEDIEAE AP A)

n n

= 2K — )y = LD~ (K = 1) D (s — B

n

31K — 1)y — BLD] + Oy,

i=1

Therefore, the second term in (3.5) can be simplified as

\/ﬁz—l[fy(xy- - X.,) - fy(l"y — )]

= n imE Y STHX; - p)(dy — B - VST fy (s, — 1) + Op(n73)
= nTINTF Y (Z;(Jy; — B[J])] - VAZ?E[Z],] + Op(n7?)

= 01872 Y [Z;(Jy; — E[J]) — E[ZJ]] + Op(n77). (3.7)
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We plug (3.6) and (3.7) into (3.5) and obtain

\/ﬁ(fyéy - fygy)

= nERTE Y (Z(Jy; ~ El)) - B2 S] - (&2 ~ DE[ZJ]) + Op(n”?)
= et S 12y — B - ZTEIZJ,)) + Oy )

= IR (e + Op(n ),

=1
where e,; = Jy; — E[J,] — ZTE[ZJ,] is the jth value for ¢,. Let ¢; =

[e1j,- -+ ,€n]" be the jth value for the random vector € (cf. (3.4)). We

have

Vn(vec(€D;) — vec(BvDx)) = nt Z vec(E_%Zje?) + Op(n_%)

j=1

where (Z;, €;) are i.i.d. random vectors. Thus,
Vn(vec(€D;) — vec(8vDs)) > Normal(0, T*),

where

T* = Cov(vec(Z~2ZeT)).

3.2 Asymptotic Properties of Optimal IRE

In this section, we show that the value of B that minimizes (3.3) is a con-
sistent estimate of B that is a basis of the CS under special conditions we
discussed previously. Meanwhile, we use nF,, as the test statistic for the null

hypothesis that dim(S;g) = m, where F,, is the minimum discrepancy value.
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Before we report the asymptotic properties of Optimal IRE, a little setup is
necessary. We need the p(h — 1) x (p + h — 1)d matrix

Ac= (VT OL, L1 ® ). (38)

The matrix A¢ is the Jacobian matrix for the discrepancy function

_ {0vec(BC) 0Ovec(BC)
A¢ = ( dvec(B) ' dvec(C) )

7

(B=8,C=V)
where 3 and v are as defined previously in Section 2.2 (cf. (2.11)). Asymp-

totic properties of Optimal IRE are given in the following theorem.

Theorem 2. Assume that the data (X;,Y;), i = 1,...,n, are a simple ran-
dom sample of (X,Y). Let S¢ = ®_,Span{¢,}, let d = dim(S¢) and let
(B,0) = argg ¢ min F4(B, C), where

Fy4(B,C) = (vec(¢) — vec(BC))TVy(vec(C) — vec(BC)),
where V,, converges in probability to V = I‘El (cf. (3.2)). Then

1. The estimate vec(BD) is asymptotically efficient, and \/n(vec(BD) —
vec(Bv)) is asymptotically normal with zero mean and covariance ma-

triz Ac(AIVA:) AL

2. nFy has an asymptotic chi-squared distribution with degrees of freedom

(p—d)(h—d-1).

-

8. Span() is a consistent estimator of S¢.

This theorem is quite general, requiring none of the special conditions
discussed previously. A value B of B that minimizes the discrepancy func-

tion Fy(B,C) always provides a consistent estimate of a basis for S, and
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this theorem allows us to test hypotheses about its dimension. However,
without some of the special conditions, S might not be a useful population

parameter and therefore tests on its dimension might not be of interest.

If the linearity condition holds then S C Sy|x. The subspace spanned
by A is still a consistent estimate of Se, which is now a subspace of the CS. In
this case we are able to use Theorem 2 to infer about a possibly proper subset
of the CS. If the linearity and coverage conditions both hold, S¢ = Sy x, and

we can use Theorem 2 to infer about the full CS.

For a sequence of V,, > 0 that converges to V > 0, the minimization
of the function (3.3) always provides a consistent estimate of vec(Bv). But
the particular choice of V,, in Theorem 2 makes the estimate have the small-
est asymptotic covariance. The proof of Theorem 2 hinges on a theorem by
Shapiro (1986) on the asymptotics of over-parameterized structural models.

Shapiro’s results are given in next section, along with a proof of Theorem 2.

Optimal IRE that incorporates a right nonsingular transformation of &
provides the same test statistic and the same asymptotic efficiency. Suppose
S € Rh-Ux(A-1) 5 5 fixed nonsingular matrix. We consider a new discrep-

ancy function associated with & S:
Gu(B,C) = (vec(¢S) — vec(BC)) TV, (vec(CS) — vec(BC)). (3.9)

The limit of nCov(vec(¢S) — vec(BrS)) is (ST ®IT':(S®I). For efficiency,
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V,, should converge to
V=(S"'® Ip)rgl(s”’ ®L,).
Let V, = (S7'®1L,)V, (ST ®1,). Then

Iél,iélGd(B,C) = Iénn(vec(& ) — vec(BC))TV,(vec(¢S) — vec(BC))
= min(vec(¢) — vee(BC))TV,(vec(l)

y

— vec(BC))
= min Fy(B, C).

1

The minimum values of F' and G are the same. Meanwhile, the new Jacobian

matrix
T T T Ipd
A= (S Ip,Ih_l ® ,B) = (S ® Ip)AC .
ST,
Therefore,
Ipd T T Ipd
AVA = A (SRL)V(S" ®I,)A,
Sl I ST I
1 ] 1 ]
= | Alva, | ™
S'® 1, S-T QI
and
A(ATYA)-AT
I I
= al™ (AIvay-| ™ AT
ST®I, S®I,

= (STRL)A(AIVA:) AT(SRL,).

Let (B, C) be the values of (B, C) that minimize G4(B, C). Based on Theo-
rem 2, v/n( vec(BC) — vec(BrS)) has an asymptotically normal distribution
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with zero mean and covariance matrix (ST ® Ip)AC(A€VA¢)‘A?(S ®L,).
It results in the same asymptotic covariance matrix if we use the estimates

from Fy(B, C) to estimate vec(BvS).

3.3 About Theorem 2

3.3.1 Preparations

The proof of Theorem 2 hinges on Shapiro’s (1986) results on the asymptotics
of over-parameterized discrepancy functions and two supplemental lemmas.

We first give these results and then show how they can be used to prove the

theorem.

Proposition 1. (Shapiro 1986, Prop. 8.1, 8.2, 4.1,and 5.1) Suppose 0 is
a q-dimenstonal parameter vector which lies in an open and connected pa-
rameter space © C R?. Let 6y denote the true value of 8. Define g(0) =
(g1(8),...,gm(0))T : © = R™, where g;(f) is twice continuously differen-
tiable on ©, 1 = 1,...,m. The Jacobian matric A = aga—(:)lgzgo need not be
of full rank, so g can be over-parameterized. Also assume

1. T, is an asymptotically normal estimate of the population value g(fp):

V(T — g(6h)) N Normal(0,I'), where n is the sample size.
2. For a known inner product matriz V, the discrepancy function
H(Tna 9(9)) = (Tn - g(a))TV(Tn - 9(0))

satisfies following properties:
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pl H(a,b) >0V a, b€ R™.
p2 H(a,b) =0 if and only if a = b.
p3 H is at least twice continuously differentiable in a and b.
p4 There are positive constants § and € such that H(a,b) > € whenever
lla — b]| > &, where || - || means ordinary Euclidean distance.
3. The point B is regular.
4. rank(A) = rank(ATVA).

Then

1. Letting H = H(r,,g(0)) denote the value of the discrepancy function
minimized over ©, the asymptotic distribution of nH is the same as the

distribution of the quadratic form WIUW, where W ~ Normal(0,T'),
U=V -VAATVA) ATV =ViQsV?
and ® = VIA.

2. If TUTUT = T'UT, then nH 3 X%, where the degrees of freedom
D = trace(UT).

A

3. The estimate g(6) that minimizes the discrepancy function is a consis-

tent estimator of g(6o) and /n(g(0) —g(8o)) has an asymptotically nor-

mal distribution with zero mean and covariance matriz V_%PQV%I‘V%PQV—%.

4. When T is nonsingular, g(é) is asymptotically efficient and nH 5 X2,
where the degrees of freedom k = m — rank(A), if and only if V =

(T + ADAT)!, where D is an arbitrary symmetric matriz.
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In our adaptation of Shapiro’s results, the inner product matrix V is of-
ten random rather than fixed as required in Proposition 1. The next lemmas
allow us to connect minimum discrepancy functions with fixed inner products
to those with random inner products. The first lemma deals with the asymp-
totic distribution of the minimum discrepancy value. The second lemma is

about asymptotic properties of the estimate of Span(3).

Lemma 2. Let {Y,} € R® be a sequence of random vectors, and let £ €

E C R®. Suppose {V,, > 0} is a sequence of s X s matrices that converges to
V > 0 in probability. If
nily = minn(Y, — TV (Y, - &) = ¥,

then nHy, = mingezn(Y, — €)TV,(Y, — €) also converges in distribution

to ¥ and vice versa.

Moreover, let 51 and éz be the values of & which reach nHy and nI:Ivn
A 1.
respectively. If V%Yn 25 o, then both Véﬁl and VZ§, converge to o in
probability.

Proof:
Since V,, — V in probability, Pr[(1 — ¢)V < V,, < (1 +¢€)V] = 1 Ve > 0.
Forany £ € E,if (1 - ¢)V <V, < (1+¢€)V, then

(Yn_g)T(l_e)V(Yn_g) S (Yn—g)TVn(Yn—g) < (Yn'"g)T(l'l'e)V(Yn—g)'
Hence, the minimum of these functions keeps the same ordering:

(1 —€)nHy < nHy, < (1+ e)nHy.

Therefore, Pr[|7;iﬁ‘:,ﬂ= -1 <¢ =1, ie. HF‘;& -, 1. By Slutsky’s theorem,

2 D
nan = U,
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Furthermore, since nHy = n||[VzY, — V2£,||2 > ¥, Ve > 0,
lim Pr[“V%Yn - V%élllz > ¢] = limPr[nAy > ne] = lim Pr[¥ > ne] = 0.
1 14 1,
Since VZ -2+ Vi, lim,_,00 V2Y, = lim V€, = lim V2§, if the first limit

exits. O

Lemma 3. Let X, denote a simple random sample {Xy,...,X,}, where X;
can be a scalar or a vector. The distribution of X depends on parameters

that include a vector § in © C R*. Let 0y be the true value of #. Assume that

1. © is an open set.

2. The mapping p(0) from © into R® is one-to-one, bicontinuous, and
twice continuously differentiable. Let D() = Q’(;—(:—) € R*** and Dy =
D(6,).

3. Y, =Y,(X,) € R® is a consistent estimate of p(6,) with
V(Y. —p(8)) LA Normal(0, T').

4. Vo, =V, (X,) is a positive definite matriz that converges to a constant
matriz 'V in probability.
Define a discrepancy function as
F(Yn,p(60)) = (Yo — p(8)) Va(Yn — p(6))-
Let § = 0(X,) be the value of 0 that minimizes F. Then
V(6 = 65) 3 Normal(0, (DTVD,) ' DIVI'VD,(DIVD,)™1),

and

Va(p(0) — p(6p)) B Normal(0, Do(DTVD,) ' DIVI'VDy(DI VD)1 Dy).
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Proof:
Define the functions G(X,,0) = DT(8)V, (Y, — p(8)). Let Go(X,,0) =
—DT(§)V,D(6) be the partial derivative of G with respect to §. We expand
G(X,,6y) about the point 0:

G(X,,0)) = G(X,,0) + [/1 Go{ Xy, 0 + A8 — 0)}dN)(8, — 6),(3.10)

where the integral of a matrix proceeds elementwise. According to the defi-
nition of § we have

OF (Yn,p(0))

90T = _2DT(é)Vn(Yn - p(é)) =0

9

i.e. G(X,,0) = 0. We multiply both sides of (3.10) by /n:
VADTO)Va(¥o = p(60)) =~V | Gt A0 = D)} (0 — o).
By Lemma 2, we know /] converges to g, thus for any A,
Go{X,,0 + A0y — )} = -DT()V,,D(0 + A8, — 6))
converges to DI'VDj in probability. Therefore, we have

1 1
lim / Go{ X, 0+1(0,—0)}d) = / lim Go{ Xy, 04X (6y—0)}d\ = DyVDT
0 0 n—o0

n—ro0

by bounded convergence theorem. By Slutsky’s theorem and delta methods,

we reach the conclusions. O

Remark:

Lemma 3 is similar to the modified x* method (Ferguson 1958). However,

the latter only deals with the cases where V, is a function of the statistic
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Y,.(X,). Lemma 3 generalized the result for all V,, that is a general function
of the whole sample A,.

Lemma 3 shows that the asymptotic distribution of p(é) is the same for
different series of V,, as long as V,, converges to the same V in probability.
It is easy to see that parameterization 6 does not affect the asymptotic prop-
erties of p(d). Thus, for simplicity, we can impose V,, = V when considering

asymptotic properties of p(8), if we can show there exists one parameteriza-

tion that satisfies the conditions in the statement of the lemma.

3.3.2 Proof of Theorem 2

In Theorem 2, we consider a discrepancy function:
Fy(B,C) = (vec(¢) — vec(BC))TV,(vec(() — vec(BC)).

We first address the issue that the inner product matrix in Proposition 1
is assumed to be known while the inner product matrix in Fj is estimated.
Since V,, converges to V in probability, it follows from Lemma 2 that the

asymptotic distribution of nFy is the same as that of nHy, where
Hy(B,C) = (vec(() — vec(BC))TV(vec(¢) - vec(BC)).

Furthermore, we want to show the asymptotic distribution of vec(ﬁr)) of
Fy(B,C) is the same as that of Hy(B,C). Based on the remarks about
Lemma 3, we only need to show there is one parameterization that satisfies
the conditions in the statement of Lemma 3. We can use the parameteri-

zation discussed at the end of Section 2.1. Let 8 = (I, 8*7)T. Therefore,
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we have parameters: B8* € RP~9%¢ and v € R**=1  and (vec(B*), vec(v))
corresponds to the # in Lemma 3. The new setting provides a full rank Ja-
cobian matrix and an open parameter space in R¥A+P=4-1) " thus satisfying
the conditions in Lemma 3. At same time, the reparameterization affects
neither our algorithm for minimization nor asymptotic results. From now

on, we only need to prove the conclusions for Hy.

Hy(B, C) is in the form of Shapiro’s discrepancy function H. This can
be seen by setting

0 — vec(B) c RéP+h-1)
vec(C)

g(8) = vec(BC) e RP+D

~

T, = vec()

g9(6y) = vec(Bv)

where B € RP*¢ is in general a basis for S; and v € R>*(*#~Y_ With these
associations we next verify that A, = (7 ® I,,1;,_; ® B) as defined pre-
viously in (3.8). Let B = [by, ..., by, where b; = (byj,...,b,;)T € RP, j =
1,2,...,d. Denote C = [Cy,...,Cy_y], where Cy = (Ci4, Co, -y, Car)” € R?,
k=1,2,....,h—1. Then,

d d d
g(8) = vec(BC) = vec([D>_cinbj, ¥ cjzbj, o Y cin—nyby])-
j=1

j=1 j=1
We have
a g( 0) the ith element the ith element
ab = (97-.-,01 le ,0,--,9[0,...,0, ng ,0,..,0!
7] -~

p elements



Therefore,

dg(6)

0 vec(B)

We also have

Therefore,

dg(0)

0 vec(C)

Hence,

the ith element

.0, ...,0, Ci(h—1) ,0,..,O)T
C11 €21 Cd1
C?z C22 Cd2 ®I, = T I,
Ci(h—1) Co(h-1) Cd(h~1)
94(6 the kth column
9(0) _ vec(0,..,0, b ,0,..,0)
(h—1) columns
bib;...by
biby...by _1,®B.
bibs...bg
dg(6
% = [C"®L, 111 ® B
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Since V > 0, conditions 2, including properties pl-p4, and 4 of Proposi-

tion 1 are met. Condition 3 is met also since g(f) is analytic. See Shapiro

(1986) for details about regular points. Since V = I‘El, based on Conclusion

3 and 4 in Proposition 1, vec(B7) of Hy(B,C) is asymptotically efficient

with

Vn(vec(BD) — vec(Br)) 3 Normal(0, Ac(ATVAL)~Ay),
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which leads to the conclusion number one. Meanwhile, nl 3 X3, where the

degrees of freedom k = p(h — 1) — rank(A¢). Since

rank(A¢) = rank(p? ® Qgp,Ir-1 ® B))
dip—d)+d(h-1)
= dh+p-d-1),

we have k = (p—d)(h—d—1). Thus, conclusion number two is proved. The

consistency of Span(3) in conclusion number three follows directly from the

conclusion number one.

3.4 Computation of Optimal IRE

To make Optimal IRE practical, we need solve two issues. The first issue is
how to decide V,,, which should be a consistent estimate of I‘&‘l. The second
one is the minimization of the discrepancy function given V,. We address

these two issues in turn.

Estimation of V

We know T; = (AT ® )I*(A ® I), where T* = Cov(vec(E 1ZeT)) €
RPA*PR a5 shown in Theorem 1. Thus, since A is a constant matrix, to
estimate V = I‘El, we only need plug in the estimate of I'* that is the
sample version of Cov( vec(E_%ZeT)), which is easy to obtain in light of the

fact E[vec(X~2ZeT)] = 0.
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Minimization of Fjy

The discrepancy function (3.3)
Fy(B,C) = (vec(¢) — vee(BC))TV,(vec(¢) — vec(BQC)),

can be minimized by treating it as a separable nonlinear least squares problem
(see Ruhe and Wedin 1980). We have separate sets of parameters, B and
C. Given B, the minimization with respect to C is straightforward: It is
a linear regression of Vé vec(¢) on Vé (In-1 ® B) of which the coefficients
are vec(C). On the other hand, consider minimization with respect to one
column by of B, given C and the remaining columns of B and subject to the
length constraint ||by|| = 1 and the orthogonality constraint bi B(_x) = 0,
where B(_y) is the matrix that is left after taking away by, from B. For this
partial minimization problem, the discrepancy function can be re-expressed

as
F* (b) = (ak - (cz‘ ® IP)QB(_k)b)TV’n(ak - (Cg ® IP)QB(_k)b)')

where o, = vec(¢—B(_xC(_g)) € R~ ¢ is the k-th row of C, and Cx)

consists of all but the k-th row of C. This is a linear regression problem again.

Outline of Algorithm

We are now in a position to describe an algorithm for the minimization of
(3.3). We call it the alternating least squares method. See Kiers (2002) for
background on alternating least squares optimization algorithms. For a given
dimension d, the algorithm searches over RP*¢ for B which minimizes (3.3).

The outline is as follows.
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1. Choose the initial B < (by, by, ...,b,). Constant initial starting vec-
tors are often a good choice. Our experience is that the initial values

do not generally affect the ultimate result.

2. Calculate
vec(C) = [(Th-1 ® BT)V, (I1—; ® B)] 7} (I4_1 ® BY)V,, vec(C).
Assign eg <+~ Fy(B, C) and iter + 0.

3. (a) Fork=1,2,...,d:

e At the current step B = (by,...,bg_1,bg, bri1,...,ba). As-
sign

ay — vee( — B(—x)C(-x)

which is a residual vector with by excluded. Find a new by
minimizing the function with the constraint that it is orthog-

onal to B(_x and has length 1:

Bk = QB(_k) [QB(_k) (CZ‘@I[))VH (ck®IP)QB(_k)]— (c£®IP)QB(_k) Vnak
e Update
B« (bl, ceey bk—la Bk, bk+1, cey bd)
C + arge. min Fy(B, C")

(b) e; + Fy(B,C) and iter <+ iter + 1.

4. Return to step 3 until e; no longer changes and then assign B« B

and exit.
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At termination, B is an estimate of B. After one iteration of step 3, the al-
gorithm produces a monotonically decreasing series of evaluations and thus
is guaranteed to converge because F; > 0. When the computing time is
an un-negligible issue, we may put an upper bound on the number of the
iteration and stop the iteration when the difference between two consecutive

evaluations of e; is smaller than a pre-specified number.

As we shall see in SIR in Chapter 5 and WCT in Chapter 6, estimated
basis directions are ordered by the eigenvalues of the sample kernel matrix.
This algorithm will not necessarily produce an analogous ordering. However,
we can construct an ordered basis for Span{ﬁ} with respect to the amount
by which directions decrease Fy(B,C). For example, the most important

direction is
b; = arg, min(vec(¢) — vec(bC))TV,(vee($) — vee(bC)),

where C € R™*(*~1) | and the minimization is over b € Span{B} with ||b|| =

1. The second direction is

~

b, = argy, min( vec(¢) — vec([b,b]C))TV,(vee($) — vec([b;b]C)),

where C € R¥**~1) and the minimization is over b € Span{B} with ||b|| = 1
and bTh; = 0. And so on.

The alternating least squares method of Optimal IRE utilizes the special
features of the objective function, therefore it is more efficient than a general
optimization algorithm. In the computation we need to find V! which is a

p(h — 1) x p(h — 1) matrix. Usually this is not a big issue. However, then
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p and h are large it may bring some computational difficulties. Later on we
propose a simplified version of inverse regression estimation, which we call
simple inverse regression estimate (Simple IRE). However the asymptotic
distribution of test statistic in Simple IRE is more complicated than a chi-
squared distribution. A simulation study comparing SIR, WCT, Optimal
IRE, and Simple IRE is included in Chapter 8.



Chapter 4

Sub-Optimal Inverse

Regression Estimation

In Chapter 3, we discussed Optimal IRE, which takes into accounts two im-
portant issues: the intrinsic location constraint (cf. (2.6)) and using the
inverse of covariance of the limiting distribution as the inner product matrix.
In this chapter, we consider a sub-optimal class that does not acknowledge
either issue. Two consequences are associated with this negligence: the esti-
mate of a basis of the CS may not be asymptotically efficient, and the test
statistic for dimension is not a chi-squared distribution under the null hy-
pothesis, but a more complicated linear combination of chi-squares. Since
efficient methods have been discussed previously and in practice we are more
concerned with the estimation of dimension, for this sub-optimal class we

focus on the asymptotic distributions of test statistics.

Suppose we examine all columns of € (cf. (2.7)) and we use a positive
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definite block diagonal matrix as the inner product matrix in the discrepancy

function:

Fy(B,C) = (vec(€) — vec(BC)) 'V (vec(§) — vec(BC))
- Z(éy - BCy)TVny(éy - BG,y) (4.1)

Y

where C, € R%. The function (4.1) is a restatement of (2.8). We call the
methods using (4.1) the sub-optimal class in the MDA family. It turns out
that SIR is a member of this class. Later on, we will see that simple inverse
regression estimation (Simple IRE)—another member in this sub-optimal
class—can perform better than SIR and WCT. When V,, converges to a
positive definite matrix, the value of B that minimizes the function still
provides a consistent estimate of the CS as we shall see. In this chapter,
we address general asymptotic properties of test statistics for any V,, > 0
that converges to V > 0. In subsequent chapters, for different choices of V,,,
we investigate minimization algorithms and specific asymptotic distributions
of test statistics. Under different assumptions, SIR and WCT use the same
block diagonal matrix as V,,, where the blocks only differ by a scalar which
makes the minimization reduce to a spectral decomposition. Simple IRE
uses another block diagonal matrix which brings a better performance but

at same time requires a more complicated algorithm.
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4.1 Asymptotic Distribution of nk,

To report the asymptotic distribution of n£}; of (4.1), we need the phx (p+h)d

matrix
A= (" ® L, @ p). (4.2)
The matrix Ag is the Jacobian matrix for the discrepancy function of (4.1)

_ [ 0vec(BC) 0vec(BC)
A= < dvec(B) ' dvec(C) )

evaluated at (83,7), where B € RP*¢, C € R™" and B along with ~ are as
defined previously in Section 2.1. Let V be the limit of V,;. Define

£, = 2-12.§y =X, - X..),

and

and define

I; = (D;'Qy ® 57)ding{Sx, }(QeD; © D7), (4.4)

where D, is a diagonal matrix with the elements of g on the diagonal, and
Qg is the projection onto the orthogonal complement of Span(g). Finally,
letting & = V%Ag and Q = V%I‘EV%, the asymptotic distribution of nF} is

given in the following theorem.

Theorem 3. Assume that the data (X;,Y;), i =1,...,n, are a simple ran-
dom sample of (X,Y). Let S = ®%_,Span{¢,}, let d = dim(S;) and let
(B,%) = argg ¢ min Fy(B, C) as defined previously in (4.1). Then
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~

1. Span(B) is a consistent estimator of S¢, and

2. asn — o0,
ph
nky — > Aa¢()

=1

where {x?(1)} are independent chi-squared random variables each with 1 de-

gree of freedom and {\ > ... > A} are the eigenvalues of QeQQs.

Similar to Theorem 2, this theorem is quite general, requiring none of
the special conditions discussed previously. Also we should notice that The-
orem 3 is valid for a general V,,, of which the block diagonal V,, used in the
sub-optimal class is a special case. The value B of B that minimizes the dis-
crepancy function Fy(B, C) always provides a consistent estimate of a basis
for S, and this theorem allows us to test hypotheses about its dimension.
With some of the special conditions, S¢ will be a subspace of the CS or CS
itself. The proof of Theorem 3 is given in Section 4.3. We next summarize
the computations necessary to implement the tests available as a result of

Theorem 3.

4.2 Computations

To use Theorem 3 in practice, we need to replace QsQQs with a consistent,
estimate under the null hypothesis. Under the hypothesis d = m, the ph X
(p+ h)m Jacobian matrix A, can be estimated consistently by substituting
the corresponding estimates for 8 and ~: AE = (¥ ®L, ® B). To estimate

V we use V,.. We also can estimate I‘é with

. _ a—1, . A _ a—1
Fé = (Dngg ® h )dlag{wa}(Qngl ® X ),
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where g = \/?, f = (.., T—‘nh)T, 3 is the sample covariance matrix, and
)A]x‘y is the sample covariance matrix for the yth slice. These estimates
are then substituted to yield an estimate of Qe2Qs from which sample
eigenvalues 5\j are obtained. The statistic nFj, is then compared to the

percentage points of the distribution of

ph
> Aé)
=1

to obtain a p-value. There is a substantial literature on computing tail prob-
abilities of the distribution of a linear combination of chi-squared random
variables. See Field (1993) for an introduction. Alternatively, the tail areas

can usually be approximated adequately by using Satterthwaite’s approxi-

mation.

4.3 Proof of Theorem 3

Theorem 3 considers the discrepancy function
F4(B,C) = (vec(€) — vec(BC))TV,,(vec(€) — vec(BC))

where V,, € RPA*Ph 5 positive definite block diagonal matrix. The function

also can be written as
Fy(B,C) = (vec(€) — vec(BC)) 'V, (vec(€) — vec(BC))

where B = ©7'8B, V,, = (I ® I8 )V,(I ® £ 'S), and & is defined in
(4.3). Since {/n also converges to V as V,, does, it follows from Lemma 2

in Chapter 3 that the asymptotic distribution of nF is the same as that of
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and, where
Hy(B,C) = (vec(€) — vec(BC)) 'V( vec(€) — vec(BC)).

This Hy is a version of Shaprio’s discrepancy function H, which can now be

seen by setting

§ - vec(B) < RiG+)
vec(C)

g(6) = vec(BC) ¢ R

T = vec(€)

g(bo) = vec(B7).

where B € RP*? is in general a basis for S¢ and v € R*". With these
associations it is straightforward to verify that A = (y7 ® I,, I, ® B) as
defined previously in (4.2). Since V > 0, conditions 2, including properties
pl-p4, and 4 of Proposition 1 are met. Condition 3 is met also since g(6)
is analytic. See Shapiro (1986) for details about regular points. With this,
we have verified all of the conditions of Proposition 1, except for asymptotic
normality.

It is easy to see that E[€] = B~y regardless of §. Thus,

Cov(vec(§)) = E[Cov(vec(€)[g)]
- %E[(D;Qg ® £7')diag{Zx,}(QgD;' ® X7'))
- %(D_g_ng ® Evl)diag{ley}(Qngl ®F) + 0(;11—)'

Therefore,

Vn(vec(€) — vec(B7)) S Normal(0, ).
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It now follows from conclusion number one of Proposition 1 in Sec-
tion 3.3.1 that the asymptotic distribution of nFy is the same as that of
Qe ViW]||? where W is normal with mean 0 and covariance matrix Tg,
and & = V%Ag as defined for the statement of Theorem 3. Consequently,
nFy is asymptotically distributed as a linear combination of independent
chi-squared random variables each with one degree of freedom. The coef-
ficients of the chi-squared variables are the eigenvalues of QsQ2Qg, where
Q= V%I‘EV% is as defined for the statement of the theorem. Finally, con-
sistency follows from conclusion number 3 of Proposition 1 in combination

with Lemma 2 in Chapter 3.



Chapter 5

Sliced Inverse Regression

In this chapter, we review one popular dimension reduction method—sliced
inverse regression (SIR). Then, we rederive it using the minimum discrep-
ancy approach. It is easy to see that SIR belongs to the sub-optimal class
we discussed in Chapter 4. Based on the asymptotic theory of the minimum
discrepancy approach, we can simplify the derivation of the asymptotic dis-
tributions of the test statistics used by SIR. Furthermore, we set the stage for

developing new methods with better performance in this sub-optimal class.

5.1 Review of SIR

We have seen that if the standardized predictor Z satisfies the linearity con-
dition:

E[Z|Ps, ,Z] = Ps,,Z,
then Span{E[Z|Y]} C Sy|z. Assuming the linearity and coverage conditions,
Li (1991) proposed SIR, which constructs a kernel matrix that is a sample
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version of Cov(E[Z|Y]). The eigenvalues of the SIR kernel matrix are used
to construct a test statistic for dimension. Given the dimension, the eigen-
vectors corresponding to the largest eigenvalues are used to estimate a basis
of the CS. The test for dimension Li proposed is based on normality of the
predictors. Bura and Cook (2001b) removed this assumption and proposed a
weighted chi-square test (WCT) for predictors with any general distribution
as long as the linearity condition is satisfied. This WCT will be discussed in

detail in Chapter 6.

The SIR procedure is as follows:

1. Standardize X to Z = 3

h
Mg = Z yzy.Z;’,F., (5'1)

where Z,, is the average of Z in the yth slice.

3. Construct a spectral decomposition of ﬁsm. Suppose fiy, fto, .., ft, are

the eigenvectors of Mgz corresponding to its eigenvalues 5\1 > >

~

Ap > 0.
. W1
4. If we assume d = dim(Sy|x) (d < min{p, h}), then B, =X *f,, j=
1,2,...,d. is the estimated basis of Sy|x.
To estimate d, test statistics were proposed in the form of A, =n )7 1 Ai-

Suppose the dimension of the central space is d, under the assumption of

normality of X, A4 has an asymptotically chi-squared distribution with (p —
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d)(h —d — 1) degrees of freedom. Begin with m = 0 and compare A,, with
the corresponding chi-squared distribution. If A,, is large, conclude that
d > m and increment m by 1 until the test statistic is relatively small. The

estimation of d is then the terminal value of m.

5.2 SIR in Minimum Discrepancy Approach

In this section, we rederive SIR as a special case of the minimum discrepancy
approach and investigate its asymptotic properties. First, let us consider an

objective function:

~

Fd(B’ C) = y(éy - ch)Ti:(éy - BCZ’J) (52)

M=

1

@
1]

(\/nyZy-_ fyi}%BCy)T(\/J?yzy-_ fyﬁéBCy)v

E

Il
—

Y

where Zy. is the average of 7 in the yth slice. Based on Lemma 5 in the
Appendix, Span(ﬁ%ﬁ) is the space spanned by the d eigenvectors correspond-
ing to ﬁsm’s d largest eigenvalues, where B is the value of B that minimize
(5.2). Thus, the estimate of 3, B, is f}_%[ﬂl, fio, ...y frg)- It is clear that SIR
is a sub-optimal class member with V,, = diag{f,3} = (D; ® ). Since
the diagonal blocks in V,, only differ by a scalar, the minimization of (5.2)
reduces to a spectral decomposition problem. We can easily see that this

spectral decomposition approach is a special case of the minimum discrepancy

approach.
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5.3 Test Statistic for Dimensionality

We note that based on Lemma 5 in the Appendix the test statistic A,, pro-
posed by Li (1991) is the same as nk, of (5.2). Without special conditions,
nE, generally has an asymptotic distribution of a linear combination of in-
dependent chi-squares with one degree of freedom based on Theorem 3. Li
(1991) showed that under normality of X, it has an asymptotic chi-squared
distribution with degrees of freedom (p — d)(h — d — 1). Cook (1998) proved
that a weaker condition—marginal covariance condition—suflices for Ay to
converge to a random variable with a chi-squared distribution. Here we re-

state Cook’s result followed by a new proof via the minimum discrepancy

approach.

Corollary 1. (Cook 1998, Prop. 11.5) Assume
1. The linearity condition: E[Z|Ps,,,Z] = Ps, ,Z.
2. The marginal covariance condition: Cov[Z|Ps, ,Z] = Qs ,-
3. The coverage condition: S¢ = Sy x.

Suppose dim(Syx) = d. Ar, is the test statistic in SIR for the null hypothesis

d =m. Then,

D
Ay = X(2p—d)(h—d—1)7 as n — 00.

Meanwhile, the estimate of Syx s consistent.
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Proof of Corollary 1

Our proof of Corollary 1 involves a fair amount of algebra. From the proof

of Theorem 3 in Section 4.3 we have

T; = (D;'Qg ® =7')diag{Tx, }(QgD,;' ® =77)
and
A =" ®L,1,®8).
Here V = (D¢ ® X). The proof involves using the various conditions of
the corollary to verifying algebraically that I'yUI';Ul'; = I'zUIL';, where
U = V%QQV%, d = V%Ag. Proposition 1 then implies that the limiting
distribution is chi-squared. The conditions of Corollary 1 allow us to use the

following lemma in its proof.

Lemma 4. (Cook 1998, Prop. 10.2) Assume that the (1) linearity condition,
(2) marginal covariance condition, and (8) coverage condition are satisfied.

Then, for each value y of Y
Span(I — Xz,) C Sy|z.
In another words, Span(X~! — 2“12x|y2“1) C Sy x.

For notational simplicity, we drop the subscripts on Iz and Ag in the

rest of the proof. Now,
TUTUT -TUT = I'ViQaV:il'ViQaVil — I'ViQsVil
= I'ViQqe(Q—1,,)Qs V2T,

where Q = ViT'V3, and

® = Via=(D,® %) ®1,1,® 8] = (DT ® E%,Dg ® $14).
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Based on the properties of projection number 1 and 4 introduced in Ap-

pendix,
Qe = Q[D37T®Qz%ﬁ2’5]Q[Ds®E%ﬂ]
= Q[Dw%%%ﬂz%]a" ®Qyip)
= (Ppr®Q a5 * Qpyyr ® L)1 ® Qg )
= Qp7® Qz%ﬁ'
We have

Q-Lr = (Qg® Ip)diag{ZZLy}(Qg ® Ip) = I
= (Qg®I)diag{X¥z, ~L}Qe®I,) — (Pg® L), (5.3)

where the diagonal matrix is over the values of Y. By Lemma 4, Span(Xz, —

I,) C Span(E% ) and consequently
Span(diag{Zzy, — I,}) C Span(l; ® £76)
and
Span((Qg ® I,)diag{3z, — L,}) C Span(Qg ® E%ﬂ) C Span(Dg ® Z%,B).
Thus the first term of Q — L, is in Span(®). It follows from (5.3) that

Qa(2 —ILn) = ~Qa(Pg® L) = —Qp 4P ® Qyy , = -Pe ®Qpy

where the last equality holds because of yD P, = vfg” = 0. Then

T'ViQa(Q - Ln) = —(D;' Qg ® £7")ding{Tx, }(QePy © T77Qy, ) =0.
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Therefore, TUTUT = I'UT. The degrees of freedom are

trace(UT") = trace(V%Q‘pV%I‘)
= trace(Qa)
= trace(Qe) — trace(Pg ® Qz%ﬁ)
= ph — rank(®) — rank(Pg ® Qg3 /)
= ph—rank(A) - (p —d),

where

rank(A) = rank([y" ® I,,I, ® A])
= rank([v7 ® Qp,1I; ® B))
= rank(y" ® Qg) + rank(I, ® B)
= d(p—d)+hd
= d(h+p—d).

Therefore, the degrees of freedom are (p — d)(h — d — 1).

Remarks

Given the correct dimension of the CS, the linearity condition and coverage
condition can assure consistent estimation of the central space. However, we
may need further assumptions for the test statistic to have some well-studied
limit distribution. Particularly, the marginal covariance condition suffices
for its distribution to converge to a chi-squared distribution. It is interesting
that under the same conditions, the test statistic still converges to the same
chi-squared distribution letting V,, = diag{f, ¥ (E[Exy])'¥} as shown in
Corollary 2, where E[iny] is the average of sample conditional covariance

of X given Y.
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5.4 Variant of SIR

Corollary 2. Assume that the (1) linearity condition, (2) marginal covari-
ance condition, and (3) coverage condition are satisfied. Suppose dim(Syx) =

d. Define a discrepancy function

h
Fy(B,C) = Z fy(éy - ch)TfJ (A [EXIY])—li(éy - ch)7 (5.4)

y=1

where E[2x|y] = ZZ=1 "ﬁf}my:y. Then, the test statistic
nky 5 X%p—d)(h——d—l)? as n — oo.

Meanwhile, the estimate of Sy|x is consistent.

We should be aware that the test statistic nE; of (5.4) is always larger
than Ay in SIR even though both converge to the same chi-squared distribu-
tion, since X > E[Xxy].

Sketch Proof of Corollary 2

The proof of Corollary 2 is similar to that of Corollary 1. For notational
simplicity, we still drop the subscripts from Tz and Ag and let S denote
Y(E[Zxy])"'2. Here we have V = D¢ ® S. Thus,

®=ViA = (D7 ®5:,D, ®S:4).

Using the same argument in the proof of Corollary 1 we have Qs = Qp_~7®

Qséﬂ‘
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Under the linearity condition, we have E[Z|Y] € Syz. Thus,
Span(Cov(E[Z|Y])) C Syz

and

Span(EZ~'Cov(E[X|Y])Z™!) C Syix.

Since X = Cov(E[X|Y]) + E[Cov(X]Y)], we have
Span{E~! —~ 7' E[Exy| 7'} = Span{Z ' — S7'} C Syx.
Meanwhile, from Lemma 4, we know
Span{E~' — 7' Zxpy X7} C Syx.
Thus, Span{Z'ExyE ™" — S7'} C Syjx. We have

Q-Ty = (Qg®L)diag{STE ' Tx, =787 ~L}(Qe® L) - (Pg ®1L,)
= (Qg ® Ip)diag{S%(E_lﬁwa”l - S_l)sé}(Qg ® Ip) - (Pg ® Ip)

where the diagonal matrix is over the values of Y. The first term above is in

Span{I, ® Sz8} C Span{®}. Therefore,

Q@(Q - Iph) = —Qs (Pg ® Ip)
= ~QpyrPe® Qs%ﬁ

because gTDgyT = f747 = 0. Then, I'ViQg(Q — I;) = 0. Hence,

I'UT'UT = T'UT'. The degrees of freedom can be obtained similarly as
in the proof of Corollary 1.



Chapter 6

Weighted Chi-Squared Test

In Chapter 5, we discussed SIR in detail. The SIR test of dimension in
Corollary 1 requires the linearity condition, the coverage condition, and the
marginal covariance condition. Bura and Cook (2001b) proposed a weighted
chi-squared test (WCT) which extended the SIR test to more general situ-
ations without assuming the marginal covariance and coverage conditions.
WCT’s estimation procedure and test statistics are the same as in SIR but
the asymptotic distribution of the test statistic becomes a linear combina-
tion of independent chi-squares. In this chapter, we consider WCT via the

minimum discrepancy approach.

As long as the linearity condition is satisfied, SIR always obtains a con-
sistent estimate of S¢ which may be a proper subset of the central subspace.
Generally the test statistic Ay converges to a linear combination of indepen-
dent chi-squares each with degree of freedom 1 as pointed out by Theorem 3

in Chapter 4. WCT summarizes the asymptotic properties in the following
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corollary.

Corollary 3. Assume only the linearity condition. Suppose dim(S¢) = d.
A, is the test statistic in SIR for the hypothesis that d = m. Then, Ay
converges to a linear combination of independent chi-squared distributions
with degree of freedom 1, of which the coefficients are the eigenvalues of
Qae2Qq, where V=D ® X, & = ViA,, Q= Vil;Vs, A, and T are
defined as in (4.2) and (4.4). Meanwhile, the estimate of S¢ is consistent.

Corollary 3 is a direct result of Theorem 3. The computations introduced
in Section 4.2 are generally valid. Here we consider estimating the eigenvalues

of Qs2Qs in more detail. We have
& =ViA, = D7’ © £7,D, ® D7)
and
Qe = Qp,y7 © Qg

as illustrated in the proof of Corollary 1 in Chapter 5. Let Z = (X—-E[X])
and g, = \/}; where f, = Pr(Y = y) as defined previously. Define

Tz = [¢E[Z]Y =1],..., gxE[Z|Y = h]] = [E[Z]Y =1],...,E[Z]Y = h]|D,
with singular value decomposition

D 0
T, = I Iy

0 0

D 0
= [[11,T42] T2, P22]T
0 0

= Ty DI
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where I'y; is an orthonormal p X d matrix, I's; is an orthonormal h X d
matrix, and D is a d x d diagonal matrix with d = dim(S¢). We know
By = 2"%TZD; 1 Therefore, without loss of generality, let 8 = 2_%]."11
and v = DI';; D', Thus,

Qs = Qpr,p®Qr,
= Qr,, ®Qr,,
= (Tpl'y) ® (Tl)
= (TnoTn)(TLeTh).

The eigenvalues of QaQQg are the same as those of (T3, ®TL,)Q(T2 @I 2),

where

Q = (Qg®I,)diag{Ez,}(Q: ®I,)

We can replace I'(5, I'yo, and € with their sample estimates to estimate the
eigenvalues. Then, we compare the test statistic to the distribution of the lin-
ear combination of chi-squares. This is exactly the computation procedures
of weighted chi-squared test (Bura and Cook 2001b), where the asymptotic
distribution is derived following Eaton and Tyler (1994). Here we derive it

through the minimum discrepancy approach.

Unlike SIR, WCT does not require either the marginal covariance con-
dition or the coverage condition. Thus WCT can be used for inference
about the dimension of the & instead of the central subspace. One spe-
cial case is to test Hy : d = 0. When Y is independent of X, the within-in

slice covariance Xx|, is same as the overall covariance matrix 3. Thus,
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Qs2Qs = (I'5,Q 22 ®1,_,) is idempotent with a trace (p—d)(h—1). The
limit distribution of nF} is a chi-squared distribution with p(h — 1) degrees
of freedom, which is the same as in SIR. Since the overall sample covariance
matrix is a more stable estimate than within-slice sample covariances, we

recommend using SIR for testing d = 0.



Chapter 7

Simple Inverse Regression

Estimation

Theorem 3 in Chapter 4 shows that any positive definite V,, that converges
to a constant matrix V > 0 guarantees a consistent estimate of S¢ and that
the minimum value of the discrepancy function also provides a venue for test-
ing its dimension. SIR and WCT adopt V,, = (D; ® f}) In this chapter, we
consider another sub-optimal class member that incorporates the variation

of within-slice covariances.

As we have seen, both SIR and WCT use the sample covariance 3 for all
slice means regardless the variation of within slice covariances. When Xxy

. . . .. . . Faal e
varies considerably, we consider positive definite matrices Vy,, = f, X% 3.

In another words, we let

V = diag{/,£E%],T} = [(D;' ® =7")diag{Ex, }(D;' @ )] .
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We expect this V can speed up the convergence of the test statistics. There-

fore, we consider the discrepancy function
oo el
> fy(§, - BC,)"EEy B(€, - BCy), (7.1)
y=1

where éy = 2~1(Xy. — X,.) as defined previously. We can estimate 8 by
minimizing (7.1) and estimate the dimension of S¢ by Theorem 3, Chapter 4.

We call this method, simple inverse regression estimation (Simple IRE).

7.1 Algorithm for Minimization

In SIR and WCT, since V,,’s are the same except for a scalar, we can
achieve minimization by a spectral decomposition. When the Xx/,’s are not
the same, we have to rely on more complicate numerical methods. Simple

IRE is based on the minimization of the discrepancy function

h
FyB,C) = Y (£, -BC,)TV,(¢, - BC,)
y=1
h 1. 1 1 . 1
= > (Vié, - Vi,BC,)T(ViE, - Vi,BC,).
y=1

This is a special case of finding the values of B and C which minimize a

generic discrepancy function of the form

M:

—§,BC;)"(a; — S,BC;), (7.2)

y=1
where B € RP*4, C = (Cy,---,Cp) € R”* o; € R and S; € R*P.

The S;’s are positive definite. All o; and S; are fixed in the minimization
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algorithm. The discrepancy function H can be minimized by treating it
as a separable nonlinear least squares problem. We have separate sets of
parameters, B and C in (7.2). Given B, the minimization with respect to C
is straightforward: We only need to solve h independent linear regressions of
aoj on S;B, j =1,...,h. On the other hand, consider minimizing H with
respect to one column by of B, given C and the remaining columns of B and
subject to the length constraint ||bg|| = 1 and the orthogonality constraint
by B(_xy = 0, where B(_y, is the matrix that is left after taking away by from
B. For this partial minimization problem, H can be re-expressed as

— c;xS;bp)T (o) = c;48;by),

J

M:

H*(bg) =
_7=1
where a§k) = a; — S;B(_x)Cj(-k), Cjk is the k-th element of C;, and Cj(_y,
consists of all but the k-th element of C;. Based on Lemma 6 in Appendix B,
the solution to this partial minimization problem is as follows: The argument
that minimizes H*(b;) subject to the constraints ||bg|| = 1 and b B(_4) =0
is
by = W - B(_k)(B(T_k)W;lB(_k))-B(T_k)W;l]Wl,

where W, = Zh c]kST ) and W, = ZJ 1 ]kSTS

We now describe an algorithm for the minimization of H in the spirit

of the alternating least square method introduced for Optimal IRE in Sec-

.tion 3.4. The outline is as follows.
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Outline of Simple IRE

For a given dimension d, the algorithm searches over RP*¢ for B which min-

imizes (7.2).

1. Choose the initial B « (b, ba,...,by). Constant initial starting vec-

tors are often a good choice. Our experience is that the initial values

do not generally affect the ultimate result.

2. Calculate

C

= arge. min H(B, C*)
= ((BTSTS,B)"'BTSTq,,...,(BTSIS,B)'B7S ay)

Assign ey + H(B, C) and iter + 0.

3. (a) Fork=1,2,...,d:

o At the current step B = (by,...,bg_1,bg, bgy1,...,bg). As-

sign

ol? — a; — 8By Cj_p

which is a residual vector with by excluded. Find a new by
minimizing the function with the constraint that it is orthog-

onal to B(_ and has length 1:

h

bz = arng_B(_k), Ibji=1 min Z(agk) — Cijjb)T(ag-k) - Cijjb).
J=1

This minimization can be achieved using Lemma 6 in Ap-

pendix B.
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e Update
B+ (b].7 R abk:—lv blt)bk‘—}—h s )bd)

C + arge. min H(B, C*)

(b) e; « H(B,C) and iter « iter + 1.

4. Return to step 3 until e; no longer changes and then assign B+« B

and exit.

At termination, B is an estimate of 8. After one iteration of step 3, the al-
gorithm produces a monotonically decreasing series of evaluations and thus

is guaranteed to converge because H > 0.

This algorithm will not necessarily produce an analogous ordering as in
SIR or WCT. However, as in Optimal IRE, we can construct an ordered
basis for Span{B} with respect to the amount by which directions decrease

H(B, C). For example, the most important direction is
h
b, = arg;, min Z(Qsjb a;)7(Qs,b o).
j=1

where the minimization is over b € Span{B} with ||b|| = 1. The second

direction is
A h
by = arg, min Y (Qg, 5,1 )" (Qs, .61 @4)-
i=1

where the minimization is over b € Span{B} with ||b]| = 1 and bTh, = 0.

And so on.
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7.2 Asymptotic Distribution of the Test Statis-
tic

The following corollary provides the asymptotic distribution of the Simple

IRE test statistics—nF} of (7.1)—based on Theorem 3.

Corollary 4. Assume only the linearity condition. Suppose dim(S¢) = d.
The nF, of

h
Fu(B,C) =Y f,(, - BC,)"3,£(¢, - BC,)

y=1
converges to a linear combination of independent chi-squared distributions
with degree of freedom 1, of which the coefficients are the eigenvalues of
QeNQq, where V = diag{f,TT5, T}, ® = ViA,, Q = VIV, A,
and T'z are defined as in (4.2) and (4.4). Meanwhile, the estimate of S¢ is

consistent.

Corollary 4 is quite general which does not require any special condition
on the distribution of (X,Y). If we we add more assumptions by assuming
linearity condition, marginal covariance condition, and coverage condition,
then the asymptotic distribution is simplified to a chi-squared distribution
with degrees of freedom (p — d)(h — d — 1), which is the same as in SIR.

Corollary 5 states this result.
Corollary 5. Assume
1. The linearity condition: E[Z|Ps, ,Z] = Ps, ,Z.

2. The marginal covariance condition: Cov[Z|Ps, ,Z] = Qs, ,-
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3. The coverage condition: 8¢ = Sy|x.
Suppose dim(Sy|x) = d. Then, the test statistic of (7.1)
~ D 2
nky — X(p-d)(h—d-1)» @S N —> Q.

Meanwhile, the estimate of Syx is consistent.

Proof of Corollary 5

Simple IRE adopts V = diag{ nyE;quZ}. For notational simplicity, we drop
the subscripts from I'; and Ag, and we let S = diag{ZE;cllyZ}} € Rphxph,

where the diagonal matrix is over the values of Y. Therefore,

= S(D:®I) = (D;®I)S = (D ®I)S(D ® 1)
(D;'Qe ®1)S™H(QeD,;* ®I),
= ViA=5:(Dyy" @ LD, ® B),

D W o H <
[

= ViI'Vi =87(Q, ®1)S7}(Q, ® I)S7.
By Lemma 4 in Section 5.3,
Span(S™' —I® £7!) C Span(I® B),

therefore,

[l

Span(Sz(S™! —I® X)) C Span(®).

Let ST! —I® X' = (I® B)A, where A € RP"*Ph then
Span(S%(Qg ® I)(S™ —I® =) C Span(S?(Q, ® I)(I® B))

C Span(S3(I® B)) C Span(®).
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By Theorem 3, to reach desired result, we only need to show that QsQ2Qs

is idempotent. First, we consider

Qs2

Thus,

Qs5:(Q @ 1)SH(Qg @ I)S*

QsS?(Qe @ N)(S™' —1® X71)(Qg ® I)ST + QsS3(Q, ® T7)S%
QaS?(Qg ® Z7)S5

QsSi (1@ £71)(Q ® I)S?

QeSI(I® T —S)(Q ®T)S? + QaS™(Q, ® T)S
QsS7%(Q, ® I)S?

Qs — QeS 2 (P, @ I)S3.

N

Q:02Qs = Qz — Qa5 : (P ®1)S7Qa = Qa — QaS (P ® Qp)S Qe

because of (Pg ® P3)S:Qqe = 0. Since [S‘%(Pg ® Qp)Sz|T® = 0, thus

Therefore,

Qs2Qs = Qs — S (P, ® Qs)S?Qs.

Qs2Qs02Qs = QaQs — QS ? (P, ® Q5)S2 Qs = QaNQa

because of QS“%(Pg®Q,3) = 0. QaN2Qs is indeed idempotent. The degrees

of freedom are

trace(QsNQs) = trace(Qs) — tmce(S_%(Pg ® Qg)S%)

= trace(Qe) — trace(Pg ® Qg)
= rank(Qs) — rank(Py ® Qg)
= ph — rank(A) = (p — d)

= (p=—d)(h—d-1).



Chapter 8

Comparison of SIR, WCT,
Simple IRE, and Optimal IRE

Four methods for sufficient dimension reduction were discussed in previous
chapters: SIR, WCT, Simple IRE, and Optimal IRE. All of them are mem-
bers of the MDA family that considers discrepancy functions in the form

of
Fy(B,C) = (vec(éM,,) — vec(BC))TV,(vec(EM,) — vec(BC)),

where V,, > 0 converges to V > 0 in probability (cf. Section 2.2). Table 8.1
summarizes the choices of (M, V), asymptotic distributions of test statistics
for dimension, and required conditions on the predictor distribution. This

table is not exhaustive. Refer to corresponding chapters for details.

A simulation study considers three models in this chapter, where all three

conditions are satisfied. Thus, theoretically, test statistics of all four meth-

71
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Table 8.1: Summary of Dimension Reduction Methods

M, A% Asymp. Dist. Conditions
SIR I, Dr® X X%p—d)(h—d—l) (D(2)(3)
WCT I, D;®% YA ()
Simple IRE I, diag{f,ZZ%, 3} Y22 Ad(1) (1)
Optimal IRE D;A r;’ Xop—aynoa—1y (1)

Note: (1) linearity condition; (2) coverage condition;

(3) marginal covariance condition.

ods should converge to their nominal asymptotic distributions. We compare
performances of SIR, WCT, Optimal IRE, and Simple IRE as in Corollary 4
by examining p-values of their test statistics for dimension when the null
hypothesis is true. The closer the empirical distribution is to a uniform

distribution, the faster the convergence.

8.1 Model A

Model A is a 1-D exponential model. The predictor X = (X1, Xy, ..., X5)T

is 5-dimensional. The response Y is generated according to the model
Y = exp[—(X1 + XQ + Xg)] + 0.56,
where X, X,, X3, V areiid. t), and

Xy = 4K+ X+ X)W +V,
Xy = 4(Xi+ Xo+ Xo)Wo—V.
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The variables €, W,,W, are i.i.d. standard normal and they are independent
of X1, X5, X3, and V. We ran 1000 simulations at each of the sample sizes
200, 400, and 800. For each simulation, we tested the hypothesis d = 1
with slice numbers A = 4, 6, and 8. The results are in Table 8.2. We also
plotted p-values against the uniform quantiles in Figure 8.1. If the actual
distribution of test statistic is close to the asymptotic distribution, the points
should lie near a straight line. The test statistic of SIR converges relatively
slowly to its limiting distribution. For WCT, Simple IRE, and Optimal IRE,
the empirical levels converge to the nominal levels much faster. Since Simple
IRE and Optimal IRE use estimates of within-slice covariance matrices, they
need a larger sample size to reach an agreement similar to that of WCT. We

also notice that the impact of the number of slices A is relatively small.

8.2 Model B

Here, we consider a 2-D model. The response Y is generated by

T 05+ (Xp+15)2

where X = (X,...,X5)T is 5-dimensional multivariate normal with zero
mean and identity covariance matrix, € is a standard normal independent
of X. This model is as same as model (6.3) in Li (1991). We ran 1000
simulations with sample sizes 200, 400, and 800. Table 8.3 presents the
empirical levels for testing Hy : d = 2. It is clear that the test statistics for
Hy : d = 2 converge to their asymptotic distributions for all four methods.

In this model, we assume normality of the predictor X, which is the ideal
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Table 8.2: Estimated level in percent of nominal 1 and 5 percent tests for
Model A: Hy :d =1 vs H; : d > 1. The nominal simulation standard errors

are 0.3 for 1 percent and 0.7 for 5 percent.

SIR WCT | Simple IRE | Optimal IRE
n 1 5 1 ) 1 5 1 5

h=4
20002 17|06 5007 70 |21 7.8
400103 1706 47|12 44 |21 7.2
800101 1505 54107 6.0 1.6 8.0
h==6
20010.2 23108 46|18 68 |16 7.7
400 0 1.7/04 41709 6.1 |09 6.1
80005 1709 39|09 47 |13 6.2
h=28
200105 2208 49,28 10.8 |1.6 8.3
4001 0.1 22103 4.811.0 6.6 1.1 6.5
80|04 25|08 45109 53 |16 6.2
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Figure 8.1: Model A: uniform quantile plot of p-values for testing d = 1 with

h=6.



76

situation for SIR. The new methods Simple IRE and Optimal IRE also do

well.

Table 8.3: Estimated level in percent of nominal 1 and 5 percent tests for
Model B. The nominal simulation standard errors are 0.3 for 1 percent and

0.7 for 5 percent.

SIR WCT | Simple IRE | Optimal IRE
n 1 d 1 5 1 ) 1 5)

h =
200101 10102 1.1]0.3 1.2 0.2 1.1
400104 17|05 21103 2.4 0.3 2.2
80006 38107 4007 37 {07 3.7
h=
20000 0710 0701 1.8 0 0.7
400 1 0.1 1902 2205 2.9 0.5 2.2
800,07 4107 43|10 4.6 1.0 3.9
=
20000 07| 0 10(04 23 0 0.7
400 105 24106 24|08 40 0.1 2.3
800 |08 38|09 40,13 45 |09 3.7
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8.3 Model C

We consider another 2-D model. The response Y is generated according to
Y = 4+ X1)(2+ Xo+ X3) + 0.5,
where ¢ is a standard normal and

X1 - W]_
X, = Vi+W,/2,

X3 = —‘/1+W2/2,
Xy = VotV
X5 = Vo— Vi

All V;’s and W;’s are independent. The variables Vi, V,, V are i.id. t),
Vs ~ t(3), V5 ~ t(5), and W, and W, are i.i.d. gamma(.25) random variables.
Model C is the same as model (24) of Velilla (1998) and (19) of Bura and
Cook (2001b). We ran 1000 simulations at each of the sample sizes 200, 800,
and 3200. Table 8.4, Part A, gives the empirical power for testing Hy : d = 1.
Part B presents the empirical level for testing Hy : d = 2. We can see from
Table 8.4 that while all test statistics for d = 2 gradually converge, the two
IRE methods converge faster than SIR or WCT. Figure 8.2 demonstrates
IRE methods’ advantage over the other two methods with respect to the
convergence speed. Meanwhile, at each sample size, the IRE methods have

better power than the other two to detect d > 1.

From this simulation study, we notice that with reasonable sample size,

Optimal IRE and Simple IRE have better performance in terms of conver-
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gence speed and power. Theoretically, Optimal IRE is the optimal method.
However, empirical experience shows that Simple IRE is more stable and can

serve as a viable alternative.

Table 8.4: Estimated power or level in percent of nominal 1 and 5 percent

tests for Model C.

SIR WCT Simple IRE | Optimal IRE
n 1 5 1 5 1 5 1 5
Part A: estimated power for Hy:d=1vs Hy :d > 1
h=4

200 | 04 31 10 65|73 212 | 43 15.5
800 | 1.7 70 | 36 1541414 649 |309 557
3200 | 32.6 64.549.7 80.4|99.5 100 {994 99.9
h==6
200 | 1.7 6.7 | 3.2 11.1 127 28.7 | 3.5 14.2
800 | 11.1 23.9|16.2 34.7|45.0 66.5 |29.9 517
3200 | 86.9 94.7 {923 97.7199.9 100 }99.6 100
=8
200 | 3.7 87 |39 1271183 36.1 | 3.3 14.0
800 | 20.2 36.8|24.5 454|464 67.3 |275 50.0
3200 | 93.6 976 |96.3 98.899.8 100 {994 99.9




SIR WCT | Simple IRE | Optimal IRE

n 1 5 1 ) 1 5) 1 5
Part B: actual level for Hy: d =2 wvs H, : d > 2
h=14

2001 0 01|01 04}02 17 0 1.7
800 | 0 05 0 15|06 36 |11 4.6
3200102 20|04 39]08 44 |11 5.6

h=6

200 0 0201 1302 25 |02 14
800 |01 1201 24,06 4.0 |0.7 3.9
3200 |04 4106 5007 51 |08 5.4

h=28

200 102 08102 10|09 35 |04 0.9
800 {02 15(04 32109 49 |08 3.8
3200106 36|07 34|06 39 |06 4.4




n = 200

n = 800

n = 3200

SIR

WCT

Simple IRE

Optimal IRE
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Figure 8.2: Model C: uniform quantile plot of p-values for testing d = 2 with

h =6.
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Dimension Reduction for
Regression Across Multiple
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Chapter 9

Sufficient Partial Dimension

Reduction

Most methods for estimating the CS are limited to regressions with con-
tinuous or many-valued predictors because it is in such cases that a lower
dimensional projection PsX of the predictors might provide an effective par-
simonious summary. Chiaromonte, Cook, and Li (2002; herein after CCL)
removed this limitation by extending the concept of sufficient dimension re-
duction to include multiple subpopulations identified by a random qualitative
predictor W. For example, W might indicate the species or gender of an in-
dividual in the population. CCL dealt with the presence of W by developing
the idea of a partial dimension reduction subspace, defined as any subspace

S that satisfies the conditional independence statement

Y LX|(PsX, W).

82
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If the intersection of all partial dimension reduction subspaces is itself a
partial dimension reduction subspace it is called the partial central subspace
(PCS) and denoted as S}(,Vlv)g The PCS is a population meta-parameter like
the CS. In particular, if the PCS is known then the regression can again be
limited to new sufficient predictors expressed as linear combinations of the
original ones: 87X = (BTX ... A% X)T, where now the columns of the matrix

B =(B,...8,) form a basis for Sgr;g and d = dim(S}(,I]V)g).

After describing the foundations of partial dimension reduction, CCL de-
veloped methodology called partial SIR, which is based on SIR as the name
implies. In addition to the usual SIR assumptions, partial SIR requires that
the conditional predictor variances Cov(X|W) be homogeneous across sub-
populations so that Cov(X|W) is a constant matrix. Subsequent experience
with partial SIR has shown that this homogeneous covariance condition is a
restriction that should not be neglected in practice. While partial SIR can be
an effective method for pursuing sufficient dimension reduction in the pres-
ence of a qualitative predictor when the homogeneous covariance condition

holds, it can also be quite misleading when the condition fails.

In this chapter, we start with reviewing the methodology of partial SIR.
along with one illustration. Then in Section 9.3 we develop a dimension re-
duction method for heterogenous subpopulations-general partial SIR (GP.SIR)-
via the minimum discrepancy approach. The algorithm of GP.SIR is similar
to that of Simple IRE in Section 7.1. One illustration is presented to demon-

strate the potential advantage of this new method. We leave the discussion of
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asymptotic properties of GP.SIR to Chapter 10. Extensive simulation study
will be presented in Chapter 11.

9.1 Partial SIR

For notational simplicity, we will follow CCL and use (X,, ;) to indicate
a generic pair distributed like (X,Y)|(W = w) so, for example, Sy, x, is
the central subspace given W = w and Z,, = 2;%()(“, — E[Xy]), where
2, = Cov(X,) > 0. The PCS is constructed so that the predictors 87X
are sufficient for every subpopulation, but they might not be necessary for
any single subpopulation. In other words, Span(3) is a dimension reduction
subspace for every subpopulation Y,, 1L X, | BTX,,, but it may not be central
for any of them. Nevertheless, CCL showed that there is a close connec-
tion between the conditional central subspaces Sy, x,, and the partial central

subspace:
8}(/1}[‘;2 = 6a't,llf=l‘gywi)(w' (91)

This identity, which does not require any conditions except for the existence
of the conditional central subspaces, suggests that SS?Q can be estimated by
combining dimension reduction across subpopulations. CCL then used (9.1)
to develop SIR-type methodology, called partial SIR, for inference about the
PCS by imposing the condition that the subpopulation covariance matrices
are constant, ¥, = X, for all w. Under this homogeneous covariance
condition, and assuming essentially that the linearity and coverage conditions

hold within each subpopulation, they based their partial SIR estimate of SSTQ
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on the implied identity

1
2

S3 = =,2,Span(Cov(E[Zw|Yiw])). (9.2)

In particular, a spectral analysis of a sample version of

can be used to infer about S)(,V,‘Q in the same way that SIR is used to infer

about Syx by using a spectral analysis of a sample version of Cov(E[Z|Y]).

9.2 Lean Body Mass Regression

To help fix ideas and highlight the main issue considered here, we revisit one
of the regressions discussed by CCL, which has been seen in Section 1.2. For
n = 202 athletes at the Australian Institute of Sport, consider the regression
of lean body mass L on p = 5 continuous or many-values predictors, the log-
arithms of height, weight, red cell count, white cell count and hemoglobin,
represented by X and gender indicated by W = m or f. While SIR is
not directly helpful because of the presence of the qualitative predictor W,
this is the kind of regression for which partial SIR was designed. In addi-
tion to the usually mild conditions needed for SIR, partial SIR requires that
the covariance matrix of X be the same for males and females, X, = X;.
Partial SIR can be quite effective for dimension reduction across multiple
subpopulations when this homogeneous covariance condition is reasonable,
but experience has shown that it can produce misleading results when the
condition fails. While departures from the homogeneity condition do not al-

ter the logic of partial SIR, CCL found that they do introduce scaling issues
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that affect spectral decompositions.

A p-value of about 0.48 was obtained from the test of X, = Xy described
by Anderson (1984, Ch. 10). Thus we felt comfortable assuming homoge-
neous covariances. Using partial SIR as proposed by CCL we inferred that

dim(5§,v|‘2) = 1. Table 9.1 shows the test results of partial SIR. A plot of L

Table 9.1: Lean Body Regression

Partial SIR
NH: d = m | Test Statistic D.F. p-value
0 173.46 30 0
1 22.264 20 0.326

versus the estimated sufficient predictor BTX is shown in Figure 9.1 which
is a duplicate of Figure 1.2 for ease of reference. The ordinary least squares
fits are shown for males and females as visual aids. The interpretation of the
plot is that while males and females have different regressions they both de-
pend on one and the same linear combination of the predictors X. This plot
can now be used to guide the remaining analysis, depending on the specific

application context.

Without the homogeneous covariance condition, the previous work does
not tell us how to apply partial SIR in this regression. However, our results
have shown that it is possible to construct useful estimates of S&V[‘;{) without

homogeneous covariances by abandoning the pursuit of SIR-style spectral
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Figure 9.1: Summary plot from application of partial SIR to the lean body

mass regression. o males. o females.

decompositions and basing estimation instead on a nonlinear least squares
objective function. We describe the new method of estimation, called general
partial SIR, in the next section and show that it reduces to SIR in the ab-
sence of subpopulations and to partial SIR when multiple subpopulations are
present and the homogeneous covariance condition holds. In effect, general
partial SIR allows the logic of partial SIR to be applied under the same con-
ditions as SIR, without the need for the additional condition of homogeneous

covariances.
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9.3 General Partial SIR

In this section, we develop dimension reduction methods for regression across
multiple subpopulations removing the limitation of the homogenous covari-
ance condition in partial SIR. Instead of constructing a kernel matrix, we

proceed via the minimum discrepancy approach by optimization an objec-

tive function.

We consider a regression Y € R! on X € RP across multiple subpopula-
tions indicated by a random variable W with support {1,2, ..., K'}. Assuming

that the linearity and coverage conditions hold for subpopulation w,

SYw Xw = ealylilspan{gwy}v

where
gwy = 2;1 (EXy|Yw = y] — E[X4]),

hw 1s the number of slices in subpopulation w and for consistency with pre-

vious notation we let h =3  h,,. It follows from (9.1) that
W w
S)(fpg = ®y_; Bpz; Span{é,,, }. (9.3)

Recalling that the columns of the p X d matrix @ form a basis for 83(}}“2, (9.3)

implies that for each §,,, we can find a vector +,,, so that

Ewy = By

This relation suggests that a basis for S}(,ITQ might be estimated by minimizing
an average discrepancy between a sample version of §,,, and the estimate of

BYwy- To develop this idea, we first establish notation to express a sample
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version of £, in terms of moment estimates of its components. For later

use, we let v, = (Yy1,- - -» Yun,) and define the d x h matrix

Y = (717"'77K)' (9'4)

Suppose we have a random sample of size n for (X,Y, W) from the total
population. There are n, points in subpopulation w, among which 7,
points have Y,, = y. Let p, = Pr(W = w) and let p, = n,/n be the
observed fraction for subpopulation w. Similarly, let f,, = Pr(Y, = y)
and let fwy = Tyy/Ny denote the corresponding observed fraction. Using
notation often associated with an analysis of variance, let X,,,; denote the
i-th observation on X in slice y of subpopulation w, let X,,.. be the average

in subpopulation w,
hy Nwy

w.. = - Z Z wau

y_l i=1
and let )_(wy, be the average of n,, points in slice y of subpopulation w.
Letting 3., denote the sample covariance of X in subpopulation w, a sample

version of §,,, can now be represented as

~ a1, — _ "
€wy = sz (wao - Xw..) = Ew

_1_
2Z
Wye

_ R _
where Zyy, = 2,,* (Xyye — Xyeo). Assuming that the dimension d of SSTQ

is known, we propose to estimate 8 and «,, by minimizing the nonlinear

weighted least squares discrepancy function

prway wy — BCuy)TEu(€,, — BCuyy) (9:5)

so that

(8,4) = argg ¢ min Fy(B, C) (9.6)
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where the minimization is over C € R*" with columns C,,, and B € R**%.

We call this method general partial SIR (GP.SIR).

The discrepancy function Fy(B, C) converges almost surely to its popu-

lation version

Fy4(B,C)

K hoy
pr Z fwy(gwy - BC’wy)Tzw(gwy - Bcwy)
w=1 y=1
= E(wy — BCwy) Zw(&wy — BCwy).

Under the linearity and coverage conditions, (8,4) = argmin Fy(B, C) so
GP.SIR provides a Fisher consistent estimate of a basis for S}(,VK‘Q The min-
imizers of F, are not unique, but that is not a problem since any basis for
Sg";() will suffice. In the algorithm described later in Section 9.4 we handle

the uniqueness issue by imposing orthogonality and length constraints on the

columns of B .

The GP.SIR estimate of 81%2 reduces to the partial SIR estimate when

the pooled covariance matrix
K
Z:pool = E ﬁ’wzw
w=1

is used in place of £, in éwy and in the inner product of the discrepancy
function. To show this, we replace 3, with f]pool in (9.6). Then after a little
algebra we find that (ﬁ,ﬁ/wy) can be obtained from the value of (B, C,,)

that minimizes

K
Ny = . _ .
Z Z _ﬁy—(zwy' - Bcwy>T(Zwy- - BCwy)>
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1 . 1

where now Zyye = 32 [Xuye — Xipeo] and B = 32 B. After minimizing

pool

over C,, for a fixed B, we have

A ST

B = 3 5 argg mlnz —||Zyye — B(BTB) BT Z,,,.|I°

w,y
-1 Ty 57 _
= 2pool argp min E : Zwy-QBZ’W?J’
wy
o -1 Ty 5
= X .o argg min trace( E p — Zoge L, Qp)

w,y

1 —
= 3 o argg min traceMesr Qp),

where Q(y = I — P, and

h hw
Mpgr = Z Dw Z fwway.Ziy. (9-7)
w=1 y=1

is the pooled sample covariance matrix of the slice means, which is the es-
timate of Cov(E[Zw|Yw]) (cf. (9.2)) used by CCL. Thus, by Lemma 5 in
Appendix B, 8 = f]_pifol[ﬂl, ..y 4], where f1;’s are the eigenvectors of /1\/\IPSIR
that correspond to its d largest eigenvalues. It follows immediately from this
result that GP.SIR reduces to SIR, ﬁsm = ﬁpsm, when there is only one
subpopulation (K = 1).

There are two essential tasks left to develop GP.SIR as methodology.
The first is to describe a numerical algorithm for the minimization in (9.6).
The other is to find an appropriate test statistic for dimensionality and its
asymptotic distribution. The algorithm is discussed in Section 9.4. Inference

is addressed in Chapter 10.
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9.4 Algorithm for GP.SIR

Like many other dimension reduction methods, SIR and partial SIR adopt
a spectral approach based on finding a consistently estimable kernel matrix
— Cov(E[Z]Y]) or Cov(E[Z|Y,W]) - that spans either Sy|x or S}(,ITQ The
eigenvectors of the sample kernel matrix (/1\/\1SIR or ﬁpsm) corresponding to
its eigenvalues that are inferred to be nonzero in the population form the
estimate of the target subspace. However, when we have heterogenous sub-
populations, the minimization of the discrepancy function (9.6) no longer

reduces to a spectral decomposition problem, which is a generalization that

allows us to get around the limitations of the previous approach.

From (9.6), GP.SIR is based on the minimization of the discrepancy func-

tion
FuB,C) = Y “2(,, - BCy,) Su(é,, — BCw)
w,y
= Z(waéwy - vaBCwy)T(wa&wy - waBCwy)a
wy
where Vi, = /Ty / n‘Z:U/Q. This is a special case of finding the values of B

and C which minimize a generic discrepancy function of the form

h
H(B,C) = ) (; — 8;BC;)"(a; - $;BC;),

j=1
where B € RPX¢, C = (Cy,---,C;) € R¥>A, a; € RP and S; € RP*P.
The S;’s are positive definite. All o; and S; are fixed in the minimization
algorithm. This general discrepancy function is exactly the same as in the

discussion of algorithm of Simple IRE in Section 7.1. We use alternate least
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squares method again for the minimization. There is one thing we should
notice: It seems best to avoid using the eigenvectors from partial SIR as
starting vectors for B since they can result in the algorithm being trapped
at a local minimum when the subpopulation covariance matrices are quite

different. Our experience is that constant initial values generally do well.

9.5 Illustration

We present a simple example to compare partial SIR and GP.SIR. We gener-
ated X from two multivariate normal populations with mean 0 and covariance
matrices ¥; = diag{9,9,1,1,1} and ¥, = diag{1,1,9,9,9}. Each sample
has 400 data points. The response Y was generated in both populations

according to the model
Y = X2 + X4 + exp[Xl + X3] + 0.2 €,

where € is an independent standard normal variate. The PCS is 2-dimensional
with true directions 8, = (0,1,0,1,0)T and 8, = (1,0,1,0,0)7. We applied
partial SIR to this data with 4 slices in each population. Partial SIR con-
cludes d > 3 at 0.001 significance level based on its test statistics, and the

first two important directions are approximately

b, = (0.59,0.37,0.62,0.36,0.01)7
and
bye = (0.59,0.34, —0.56, —0.46, 0.05).
The first direction falls close to S}(,V‘[Q: bJ X has a multiple correlation of
0.999 with 87X and BTX. But the second direction is nearly orthogonal
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to S)(,V!‘Q The multiple correlation between bJ,X and (BTX, BTX) is 0.095.
It seems that partial SIR confuses the covariance difference as part of the

partial central space. Partial SIR considers
EEJOIE[X"W’ = X = zgololzwz;lE[wa- — Xya] = 2;ololzwﬂ')’wy'

By construction, in this example, 3,5 = 5I. Therefore, the partial SIR
discrepancy function will estimate the space @®,,,,Span{%,,87,,}, which is 4

dimensional.

On the other hand, given d = 2, GP.SIR estimates the directions as
by, = (0.69,0.23,0.675,0.12,0.01)

and

bgye = (—0.21,0.62, —0.13,0.74, —0.05)T.

The multiple correlation with 87X and 87X is 0.997 for bl

T X and is 0.993

for b7 ,X. Thus, the GP.SIR estimates are much closer to the true space

than partial SIR estimates.

There is one key issue remaining, which is how to infer about the di-
mension of the PCS when using GP.SIR. Here we can also benefit from the
minimum discrepancy approach because the minimum value can be used to
construct a test statistic for dimensionality. The construction of test statis-

tics and inference are the topics of the next chapter.



Chapter 10

Inference about Partial

Dimension Reduction

We saw at the end of Section 9.3 that when there is only a single subpopula-
tion (K = 1) and d = dim(Syx) is known, minimization of the discrepancy
function Fy(B, C) (9.5) results in the SIR estimate of Sy x. In this case the
minimum value Fj of Fy is ,
Fo= Y
j=d+1
where \; > ... > 5\p are the eigenvalues of /1\/\Ism defined in (5.1). The usual
SIR test statistic for testing d = m versus d > m, where m < p, is simply

nFy,, with relatively large values resulting in rejection.
Assuming that X has a multivariate normal distribution and implicitly
assuming the coverage condition, Li (1991) proved that the null distribution

of nF} is asymptotically chi-squared with (p—d)(h—d—1) degrees of freedom.

95
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Bura and Cook (2001b) proved that nF, has the same asymptotic distribu-
tion under the coverage and linearity conditions plus the marginal covariance
condition Cov(Z|Ps,,Z) = Qsy, where Qs,,, = I, — Ps,, projects onto
the orthogonal complement of Syz. This condition is equivalent to requiring
that Cov(Z|Ps,,Z) be a nonrandom matrix and, like the linearity condi-
tion, it applies to the marginal distribution of Z. Normality of X implies the
linearity and marginal covariance conditions, but not the coverage condition.
Bura and Cook (2001b) also proved that in general nFy is asymptotically
distributed as a weighted sum of independent chi-squared random variables
and showed how to construct consistent estimates of the weights for use in

practice (cf. Chapter 6).

There are parallel results for partial SIR. The partial SIR statistic pro-
posed by CCL for the hypothesis d = m versus d > m is again proportional

to the minimum value of F,:

where &; > ... > &, are the eigenvalues of /Mpsm defined in (9.7). CCL
showed in effect that if subpopulation coverage and linearity hold, if the
subpopulation covariance matrices are homogeneous (X, = Xp,,) and if
Cov(Zy|P ¢ Z,,) is a nonrandom matrix given w, then in partial SIR appli-
cations, nfy is asymptotically distributed as a chi-squared random variable
with (p — d)(h — d — K) degrees of freedom. Although not emphasized in
the main part of their article, they also showed in an appendix that without

these conditions nFy is distributed asymptotically as a linear combination of
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independent chi-squared random variables. We will revisit the asymptotics

of partial SIR in Section 10.4.

In SIR and partial SIR applications, d is often estimated by hypothesis
testing using the statistic nky: Starting with m = 0, test the hypothesis
d = m versus d > m. If the test is rejected, increment m by one and test
again, stopping with the first nonsignificant result. This type of procedure is
fairly common for estimating the dimension of a subspace (see, for example,

Rao 1965, p. 472).

Since nF), is a generalized version of the test statistics for SIR and par-
tial SIR, we propose to use it to test the hypothesis d = m versus d > m
in GP.SIR. This requires the asymptotic distribution of nFy or perhaps a

nonparametric alternative. Here we follow the asymptotic route.

10.1 Asymptotic Distribution of the Test Statis-
tic in GP.SIR

A little setup is necessary before we can report the asymptotic distribution of
nFy in GP.SIR. Conditioning on subpopulation w for the time being, define
the random variable J,, to equal 1 if ¥;, = y and 0 otherwise. Given w,

E(Jwy) = Pr(Yy = y) = fuy- Define

Ewy = Jwy - fwy - ZgE[ZwaZI]
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to be the population residuals from the ordinary least square fit of J,,y on Z,,,
still conditioning on w. Let &, = (€y1,..-,Ewn, )’ denote the A, X 1 vector
of residuals, one for each slice, for a typical observation from subpopulation
w, and let £, = (fu1, fwzs---, fuh,)', Where fu, = Pr(¥, = y), and let
D¢, = diag{ fu,} be the hy x h,, diagonal matrix with the elements of f,, on
the diagonal. With this notation we can now define the following ph,, X phy,

covariance matrix for subpopulation w:
Q, = Cov(D; e, ® Zy,). (10.1)

We then arrange these covariance matrices in a ph X ph block diagonal ma-
trix Q = diag{€,}, which is one component that we need to describe the

asymptotic distribution of nFy.

We also need the ph x ph block diagonal matrix
V= diaug{waf"w1 ® Xy} (10.2)
and the ph X (p + h)d matrix
A=0TeL,LA). (10.3)

The matrix A is the Jacobian matrix for a vectorized version of the discrep-

ancy function:

_ {0vec(BC) 0vec(BC)
A= < dvec(B) > 0 vec(C) )

evaluated at (8,v), where B € RP*¢, C € R¥", 3 is a basis for Sl(,l/]‘;g as
defined previously, v = ~ydiag{Ds,}, and ~ is as defined in (9.4). Notice
that the definitions of 8, -, and v are different from those in Part I. Here
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V is the inner product matrix for the same vectorized version of Fj. Finally,
letting ® = A& A, the asymptotic distribution of nFy is given in the following

theorem.

Theorem 4. Assume that the data (X;,Y;, W;), i = 1,...,n, are a simple
random sample of (X,Y,W). Let S¢ = @5:1®Z§18pan{§wy}, let d = dim(Sg)
and let (B,%) = argg ¢ min Fy(B, C) where Fy as defined previously in (9.5):

K hay
Fa(B, C) = Zﬁw Z fwy(éwy - Bcwy)Tzw(gwy - Bcwy)
w=1 y=1

Then

~

1. Span(f) is a consistent estimator of S, and

2. asn — 00,

ph
nFy = Z Aixi (1)
=1

where {x3(1)} are independent chi-squared random variables each with 1 de-

gree of freedom and {\; > ... > Ay} are the eigenvalues of QaNQs.

This theorem is quite general, requiring none of the special conditions
discussed previously. The value B of B that minimizes the discrepancy func-
tion Fy(B, C) always provides a consistent estimate of a basis for S¢, and this
theorem allows us to test hypothesis about its dimension. However, without
some of the special conditions, S¢ might not be a useful population parame-

ter and therefore tests on its dimension might not be of interest.

If the linearity condition holds within subpopulations then S C S}(,%g

The subspace spanned by B is still a consistent estimate of S¢, which is now a
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subspace of the PCS. In this case we are able to use Theorem 4 to infer about
a possibly proper subset of the PCS. If the linearity and coverage conditions
both hold, then we are back to the main line introduced at the beginning of
Section 9.3. In this case, as previously pointed out in (9.3), S¢ = SSTQ, and
we can use Theorem 4 to infer about the full PCS.

As similar to that of Theorem 3, the proof of Theorem 4 hinges on Propo-
sition 1 by Shapiro (1986) on the asymptotics of overparameterized structural

models (cf. Section 3.3.1).

Proof of Theorem 4

To use Shapiro’s results we first write our discrepancy function F; defined at

(9.5) in the form of the general discrepancy function of Proposition 1.

Using the definitions of €, and Ewy established at the beginning of Sec-

tion 9.3, define ¢,,, = fuy&,, With corresponding sample version &wy =

f',,,yéwy. Define also, €., = (€1, - - -5 Cyn,,) and

C = (Cla"'aCK) (104)

with corresponding sample versions &w and ¢. Then for fixed dimension d

the GP.SIR discrepancy function can be written as
Fy(B, C) = (vec(¢) — vec(BC)) TV (vec(¢) — vec(BC)) (10.5)

where V = diag{ﬁwD?@f}w}. The argument C used here corresponds to the
argument C in (9.5) times diag{Dsg,}. The same relationship holds between
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v and v mentioned following (10.3), v = «ydiag{Ds, }. The argument B that
stands for a basis of SS}"Q is the same in both versions. That Fj is a version

of Shaprio’s discrepancy function H which can be seen by setting

§ — vec(B) c RiG+)
vec(C)

g(f) = vec(BC) € R

™, = vec(€)
g(6y) = vec(Bv)

where 3 € RP*¢ is in general a basis for S¢ and v € R¥*"*. With these asso-
ciations it is straightforward to verify that A = (0T ® I, I, ® B) as defined
previously in (10.3).

We next address the issue that the inner product matrix in Proposition 1
is assumed to be known, while the inner product matrix in Fy is estimated.
Since V converges to V in probability, where V is as defined in (10.2), it fol-
lows from Lemma, 2 in Section 3.3.1 that the asymptotic distribution of nk,
is the same whether we use V or V as the inner product matrix. Thus we
now replace V with V in Fj. Since V > 0, conditions 2, including properties
pl-p4, and 4 of Proposition 1 are met. Condition 3 is met also since g(6)
is analytic. See Shapiro (1986) for details about regular points. With this,
we have verified all of the conditions of Proposition 1, except for asymptotic

normality.

The strategy to showing asymptotic normality is to decompose v/n( vec(¢) -

vec(Br)) as a summation of i.i.d. observations plus a remainder converging
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to 0 in probability. Then, by the central limit theorem, we obtain the con-
clusion. This is the same strategy we used in Section 3.1. Now let us focus
on a generic wth population. For notational simplicity, we drop w from the
subscripts and will restore it when we reach the conclusion. The subscript y

still denotes a slice in the subpopulation.

With w suppressed, recall that Xy. is the average of n, observations in
the yth slice and X,, is the grand average of all n observations. Letting

p, = E[X,.] and p = E[X..], consider

Vn(é, - ¢,)

= VifE (X —X.) - Vaf, B (g, — p)

= Va(E " =S fy(uy — 1) + VST Ky - Ka) = fy (g — 1))
AT = SRy - Ke) - fy(y — )]

= VaE T =2y — 1)+ VIS (K. - Ko) = fy (i, — 0]
+0,(n"%). (10.6)

Define h random variables J, such that J, equals 1 if the point in the y-th
slice and 0 otherwise, y = 1,2,...,h. Then, E[J,] = f,. Let J,; denote
the value of J, for the jth observation, j = 1,2,...,n. By Lemma 1 in

Section 3.3.1, we have

ST -m = tm Y (2,20 DT 4 0y(n ).

j=1
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Therefore, the first term in (10.6) can be simplified as

AET =S (p, - )

n

= —pIx" %ZZZT—I T3 f, (1, — p) + Op(n72)
= —p %" %ZZZT E[ZJ,] + Op(n"32). (10.7)

Meanwhile, by definition of J,;, we have

(R =Ka) = = ST~ Koy

= %g[(x, — ) (Jy; — E[J))] - %]Zi;[(x p)(Jy; — E[Jy])]
= 5 I~ B~ R 300 EL)
- ‘Z Ji — ELJD] + 0y(nY).
Therefore, the second term in (10.6) can be simplified as
VB (K = X = f by = )
- e Z[z" )y — L] = VA=, 11, = ) + Oyln~)
= poiy- Z — VX 3E[ZJ,] + O,(n"?)

= npix- Z (J,; — E[J,]) — E[ZJ,]] + Op(n"%). (10.8)
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We plug (10.7) and (10.8) into (10.6) and obtain

V(g = ¢,)

= n7imT an[zj(efyj — BlJ,]) - B[ZJ,] - (Z,Z] — DE[ZJ,]] + Op(n"?)
= i Z ~ ZE(Z,))] + Op(n ™)

= n*%z"%Z[Zﬁw’]‘*‘Op(n‘%)a

i=1
where ey; = J; — E[J,] — ZTE[ZJ,] is the population ordinary least square
residual. Denote €; = [e1j,- - ,&x;]” as the jth value for the random vector

€= (e, - ,en)T. We have
V= ¢) =n"TE71 Y Ziel + 0,(n7E)
j=1

and

Vn(vec(¢) — vee(¢)) =n 2Zvec 2Ze ) + Op(n"3),

where (Z;, €;) are i.i.d. random vectors.

Restoring w in subscripts we have
Ve vec(C,) — vec(Bry)) — Normal(0, %),
where
Q) = Cov(vec(Sy?Zyel)). (10.9)
By Slutsky’s Theorem, we reach the conclusion that

Vn(vec(¢) — vec(Bv)) — Normal(0, T').
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where T' = diag{ -, }.

It now follows from Proposition 1 that the asymptotic distribution of
nkFy is the same as that of ||QsVY/2W||?> where W is normal with mean 0
and covariance matrix T' and ® = V'/2A as defined for the statement of
Theorem 4. Consequently, nky is asymptotically distributed as a linear com-
bination of independent chi-squared random variables each with one degree
of freedom. The coefficients of the chi-squared variables are the eigenvalues
of

Qs V' TV2Qs = Q20Qs

where Q = VY2I'V'/2 is as defined for the statement of the Theorem. Fi-
nally, consistency follows from conclusion number 3 of Proposition 1 in com-

bination with Lemma 2.

10.2 Computation of GP.SIR

We next summarize the computations necessary to implement the tests avail-

able as a result of Theorem 4.

To use Theorem 4 in practice, we need to replace Qe2Q4 with a con-
sistent estimate under the null hypothesis. Under the hypothesis d = m, the
ph % (p + h)m Jacobian matrix A can be estimated consistently by substi-
tuting the corresponding estimates for 8 and v: A = (T ® L,I,® B). The
remaining unknowns are moments that do not depend on the hypothesis and

can be estimated consistently by substituting the usual sample versions. To
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estimate V we use V = diag{ﬁngl ® f}w}. Because €,, contains residuals
from the population ordinary least square fit of J,,, on Z,, within subpopu-

lation w, it is uncorrelated with Z,,. Consequently,
Q, = (D ® I,)E(euel ® Z,25)(D;* ® L)

which suggests the estimate

- _ 1 &, . -5 -
Q, = (Df-wl/2 b2 Ip) (;‘ Z(ewjegj ® ijzﬁj)> (Dg‘wlﬂ ® I:D)
w

j=1

where Z,, is the sample version of Z, and &, contains residuals from the
sample ordinary least square fit of J,, on Z.. These estimates are then
substituted to yield an estimate of Qs€2Qs from which sample eigenvalues
5\j are obtained. The statistic nF}, is then compared to the percentage points

of the distribution of .
p
Z A (1)
=1

to obtain a p-value.

10.3 GP.SIR with Known Population Covari-

ances

In this section we present two corollaries to Theorem 4 that describe the
limiting distribution of the test statistic n£; under various additional condi-
tions. The first corollary deals with regressions in which the subpopulation

covariance matrices 3, are known and used in place of the corresponding
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estimates in the discrepancy function Fy defined at (9.5). The second corol-
lary takes a step further. With additional marginal covariance condition, the

test statistic has an asymptotic chi-squared distribution.

Corollary 6. Assume that the subpopulation covariance 3, are known and
used in the discrepancy function to compute (B,'Ay) = argg ¢ min Fy(B, C).
Then, as n — o0,

ph

i=1
Here {\ > ... = A} are the eigenvalues of QaQQs, where Qs 1s as
defined in Theorem 4, but Q = diag{Q,} with

Q= (Qg, ® Ip)diag{Ezw|y}(ng ®1,)

where the block diagonal matriz is over the values of y in subpopulation w,

and gy 15 the hy x 1 vector with elements \/ fuy, ¥y =1,..., hy.

Corollary 6 shows that the asymptotic distribution of nky simplifies some-
what if the subpopulation covariance matrices are known, but it still involves
a linear combination of chi-squared random variables. However, if we add the
linearity, coverage and marginal covariance conditions then the asymptotic

distribution simplifies to a chi-squared as described in Corollary 7.

Proof of Corollary 6

Define the p x h,, matrix

Xy

[XWIM Tt axwhw.]-
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Then using the known subpopulation covariance matrices £y, C,, in (10.5)

now can be written as

Cw = T XDy, Qg Dg,
where g,, is the A, X 1 vector with elements fwy, y=1,..., hy. Estimation
in this case is based on minimizing the discrepancy function (10.5) using the
¢, with inner product matrix V = diag{ﬁwa'l ® X, }. Define

Ga(B,C) = (vec(C,,) — vee(BC,)) Vi (vec(l,) — vec(BCy)),

w
where ¢, = E;ngulwa = [fur 22 Xote — Xueo)s - funy B Kuhye —
Xue)], and V,, = waf‘wl ® X,. By Lemma 2 in Section 3.3.1, the asymp-
totic distribution of nF} is the same as that of nGy. It is easy to see that as

Ny — 00, /Nw( vec((,,) — vec(Br,,)) converges to a normal random vector

with mean zero and some covariance matrix ®,,.

To find ®,, first note that E({,|f,) is constant and thus

Cov(vec(&w))
= E[Cov(vec(,)E,)] + Cov(E[ vee(C,,)|fu])
= E[(D¢,D;.Qg,Dg, ® Eil)diag{h—l*zxwiy}(Dgw Qg Dz, Dr, ® 1)
wy

1 —1\ s _ 1
= _—(Dnggw ® zwl)dla’g{zxww}(ngDgw ® 2]wl) + 0(—)

n’lU nw

where Xx_ |, is the conditional covariance of X,, given Y, = y in the wth

population. Therefore, we have

¢w = (Dnggw ® 2;1)diag{zxw‘y}(ngDgw ® 21—;11)
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Consequently, with ¢ = (&1, ooy €Cx)s
Vn(vec(¢) - vee(Bv)) = Normal(0, T)

where I' = diag{T',, } and Ty, = ¥, /Dw.

It now follows from Proposition 1 that nF} is asymptotically distributed
as a linear combination of independent chi-squared random variables each
with one degree of freedom. The coefficients of the chi-squared variables are

the eigenvalues of

Qs VIV Qs.

Thus, 2 = diag{Q, } with

Qu = (vPuDy, ® ") 8u/pu(vbuDy, © /%)
= (ng ® 2;1/2)d1ag{zxwly}(ng ® 2;1/2)
= (ng ® Ip)diag{zzwly}(ng ® Ip)7

which is the desired conclusion. O

Corollary 7. Assume that
1. the linearity condition is satisfied within each subpopulation,
2. for each subpopulation, Cov(Zy|Psy, , Zw) = Qsy, 1z, 5
3. the coverage condition holds, dim(SgrQ) = dim(5¢) = d,

4. the subpopulation covariances 3, are known and used in the discrep-

~

ancy function Fy to produce the estimate Span(Q3) of Sl(,vlgg
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Then nEy has an asymptotic chi-squared distribution with (p—d)(h—d—K)

degrees of freedom.

The premise leading to the asymptotic distribution of Corollary 7 is sim-
ilar to that for the asymptotic distribution of the test statistic for partial
SIR (CCL, prop. 4.2). Both use conditions 1-3 of Corollary 7. Partial SIR
then adds the homogeneous covariance condition and estimates the common
value by pooling. In contrast, condition 4 stipulates that the subpopulation
covariances are different but known. Both ways lead to the same asymp-
totic chi-squared distribution. The asymptotic distribution for partial SIR
can also be derived by using the minimum discrepancy approach as shown

in Section 10.4.

Proof of Corollary 7

Our proof of Corollary 7 involves a fair amount of algebra. From the proof of
Corollary 6 we have I and V; A is as given in (10.3). The rest of the proof

involves using the various conditions of the corollary to verifying algebraically

that TUT'UT = I'UT, where
U=V-VAATVA) ATV = ViQsVs.

Proposition 1 then implies that the limiting distribution is chi-squared.

Now,

TULUT —TUT = I'ViQgViI'ViQgV:l —I'ViQgVil

= TV:Qqe(Q-1,,)Qs V2T,
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where @ = V2T'V# as indicated at the end of the proof of Theorem 4, and

1
® = ViA =diag{\/p.D;: @ T} ® 1,1, ® B]
L 1
VDT @2 /piD. @ 218

1
2

1
VPxkD v ® Bk VPxDg, ® i

where v, = v, D¢, w=1,..., K.

Considering a generic w-th subpopulation, we have from Corollary 6

Qo —Lpp, = (Qg, ® Ip)diag{Ezw|y}(ng ®1Ip) — Iy,
= (Qg, ® Ip)diag{Ezw|y - I,}(Qg, ®1,) — (Pg, ® [}.10)

where the diagonal matrix is over the values of Y,,. The conditions of Corol-

lary 2 allow us to use Lemma 4 in Section 5.3, such that
Span(Sz, |, ~ I) C Span(Ti6) = Swjz..
Consequently, we have
Span(diag{Ez,1, — L,}) € Span(T, ® £36)
and
Span((Qg, ®1I,)diag{Xz,,—L}) C Span(ng®2$ﬁ) C Span(D;j®23 ).

It follows from (10.10) that the first term of Q — L, = diag{Q, — L s, } is
in Span(®) and therefore

Qs (2 - Iph) = _QQdiag{Pgw ® Ip}
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where diag{Pg, ® I,} is over w. For the projection operator Qs, we can
consider the complement orthogonal projection of any matrix which spans

the same space as ® does. We notice that

Qs = Qs, = Q4,,Qs,, = Q2,,Qs,,,

where
i, L L .
\/p_nglluf ® (22;}ﬁzl2 Ih1 ® EIZB
@, =[P, Ppo] =
1 1
| VPRDg Vi ®Q y T Ine ® B}

Here ®;; and ®,, are implicitly defined. We also have

1 1
(VPuDg Ve ® Q1 BE«%)T(Pgw ®©1) = VPuruDg,Pg, ®TiQ_y

1
= VPurule, ® TiQ .
=0

because v,,1 = «,,f, = 0. Thus, ®],diag{P,, ® I,} =0 and

Qc}(Q — Iph) = _QQdiag{Pgw Y Ip} = _Q‘I>12Q‘I>11diag{Pgw ® Ip}
= —Qe,diag{Pg, ®L} = ~diag{Py, ®Q }.
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Therefore,

I‘V%QQ(Q - Iph)
= —T'Vidiag{P,, ® Qs o
. 1 ~1y 1 ”
= —dlag{p—(Dnggw ® Ewl)dlag{zxww}(ngDgw ® 21}
1
diag{y/puDg, ® T }diag{Pg, ® Q_4 o

. 1 —1y g =3
= —dlag{\/———p:(Dnggw ® X, )diag{Zx, v} (Qg. Pg., ® Tw Qzéﬂ)}

= 0.
Therefore, 'UT'UT' = I'UT". The degrees of freedom are

trace(UT) = trace(V%Qq,V%I‘)
= trace(QaQ)
= trace(Qs) — trace(diag{Pg, ® Qzéﬂ})
= ph —rank(®) — rank(diag{Pg, ® Qz;%’ﬁ})
= ph—rank(A) — K(p - d),

where

rank(A) = rank(pT @ L, 1, ® 8])
= rank(p? ® Qp,1, ® A))
= rank(v” ® Qg) + rank(I, ® B)
= dlp—d)+hd
= dh+p-d).

Therefore, the degrees of freedom are (p — d)(h — d — K).
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10.4 Partial SIR Revisited

We have seen that partial SIR is a special case of GP.SIR when all population
share the common covariance matrix. CCL proved that replacing condition
number 4 in Corollary 7 with homogeneity of subpopulation covariances, the
test statistic has the same asymptotic chi-squared distribution. Up to this
moment, we find this a very natural by-product. We restate their result and

give the justification in the minimum discrepancy approach.
Corollary 8. (CCL 2002 Proposition 4.2) Assume that
1. the linearity condition is satisfied within each subpopulation,
2. for each subpopulation, Cov(Zw|P5Yw|zw Zy,) = Qsy,, 2,
3. the coverage condition holds, dim(Si%g) = dim(S¢) = d,

4. the subpopulation covariances X, = Zip.. The estimate of the common

covariance K
2pool = Zﬁwiw
w=1
s used in the discrepancy function Fy to produce the estimate Span(B)

of SUH.

Then nFy has an asymptotic chi-squared distribution with (p— d)(h—d — K)

degrees of freedom.
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Let us re-examine the discrepancy function of partial SIR

Fd(B7 C) = ﬁw fwy(éwy - Bcwy)Tépool(éwy - Bcwy) (10'11)

R P 1 e o1
DPw Z fwy (gwy - zpolalEpoolBCwy)TEpoolzpoolzpool

where Ewy = E;Of)l}jpoolﬁwy. Therefore, by Lemma 2 in Section 3.3.1, the

asymptotic distribution of the minimum value of (10.11) is the same as that
of
K haw
Y Pu Y fuy(€uy — BCuy) Epoat(€y — BCuy)
=1 y=1
that is the objective function when all population covariance 3, are known.

Then the result follows from Corollary 7.



Chapter 11

Comparison of Partial SIR and
General Partial SIR

In this chapter, we consider three versions of the test statistic nﬁd. The
three versions used were the tests for partial SIR, GP.SIR with known sub-
population covariances ¥, as in Corollary 6, and GP.SIR with estimated
subpopulation covariances as in Theorem 4. Table 11.1 summarizes their

main features.

11.1 Simulation Results

In this section, we present results from a simulation study to investigate
the actual level of nominal 1 and 5 percent tests. Here we present results
based on two models. The predictor X comes from two populations. For
each model, we consider two scenarios: normal populations with equal and

unequal covariances. We also present simulation with non-normal cases. We

116
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Table 11.1: Summary of partial SIR, GP.SIR with Known and Unknown X,,.

Methods é wy Matrix Agsymp. Dist. Conditions

pool(X — Xyeo) Do frugEpool Xip—ayh-d-1)  (1)(2)(3)(4)*
GPSIR, =, Z0'(Xuye — Xuwe)  DufuyZe S0 Xix2(1) (1)
-1, .- _

GPSIR, £, 3, Xupe = Xue)  DufuyZe 202301 (1)

Partial SIR X

Note: (1) linearity condition; (2) coverage condition;
(3) marginal covariance condition;

(4) constant subpopulation covariance condition.

ran 1000 simulations for each sample size and ran tests with different slice
numbers. Note that the nominal standard errors are 0.3 for 1 percent and

0.7 for 5 percent.

Simulation One

For the first model, the response Y is generated as
Y = exp[—(Xi+ X2+ 2X3)] + 0.5¢, (11.1)

where X = (X1, Xo, ..., X5)T is sampled from one of two normal populations
indicated by W, X|W ~ Normal(0,X,,). For each simulation with sample
size n we generated half of the sample from each population, and set the slice

number within each population to %

The results in Table 11.2 are from simulations with ¥; = 35 = I5. The
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results confirm the asymptotic results and, as expected, confirm that larger
sample sizes are needed for the actual level of the GP.SIR test to get usefully
close to the nominal level. Large sample sizes tend to be needed to comf)en—
sate for the additional variability caused by the estimation of the eigenvalue

in its large sample distribution.

The results in Table 11.3 are from simulations with X; =I5 and

[ 1418 0089 -0.963 0538 0922 \
0.089 1.128 -0.206 0.342 0.310
0.963 -0.206 0.853 -0.270 -0.659
0.538 0.342 -0.270 0.407 0.417
\ 0922 0310 -0.659 0417 0.656

2

Obviously, 2; # 3, the difference being easily detected by the test in An-
derson (1984, Ch. 10) in samples of size 100. The very high estimated levels
for partial SIR indicate far too many rejections. These results support our
previous observation that partial SIR tends to confuse difference between
the subpopulation covariances with the PCS. The results for GP.SIR are

qualitatively similar to those in Table 11.2.
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Table 11.2: Estimated level in percent of nominal 1 and 5 percent tests
based on three versions of the statistic nFy with d = 1 for model (11.1) with

2]_:22=I.

Partial SIR | GP.SIR, &, | GP.SIR, X,
n |1 5 1 5 1 5

h =
100 |08 53 |05 42 |41 124
20009 55 1.0 61 |15 99
400 | 1.7 57 |15 54 |17 75
80015 51 |15 56 |14 6.0

100104 4.0 |05 4.1 277 123
200108 44 |09 4.8 1.8 7.1
400 | 1.1 47 | 1.1 4.8 0.9 6.5
800105 46 |09 4.9 0.8 5.7
h =10
100 (09 4.7 |0.7 4.5 3.7 13.9
200108 40 |09 3.9 1.2 7.1
400 1 0.8 53 0.7 5.0 0.9 3.9
800 0.7 43 |10 4.5 1.1 4.6
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Table 11.3: Estimated level in percent of nominal 1 and 5 percent tests
based on three versions of the statistic nFy with d = 1 for model (11.1) with

¥ # .

Partial SIR | GP.SIR, ¥,, | GPSIR, 3,
n | 1 5 |1 5 1 5

h =
100 | 54.4 80.5 | 0.5 47 |47 122
200 | 98.4 995 | 1.0 49 |23 89
400 | 100 100 |05 38 |1.0 48
800 | 100 100 |1.0 57 |16 5.3
h=38
100 | 424 723 |07 53 |34 140
200|962 99.3 |08 48 |22 99
4001 100 100 [09 59 |17 6.7
800 | 100 100 (09 51 |15 5.5
h =10
100 | 33.7 624 |05 42 |27 139
2001932 983 |14 50 |22 86
400 | 100 100 |06 46 |14 6.1
800 | 100 100 [0.8 45 |11 5.4
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Simulation Two

The second model we used has structural dimension 2,

X1
Y = 0.5¢. 11.2
05+ (X, +15)2 00 (11.2)

Here € is a standard normal random variable independent of the predictors
X and W. Table 11.4 shows the estimated levels with predictor distribution
as in Table 11.2 that has X; = X,. All three methods work well as expected.
However, all three tests tend to be conservative for the smaller sample sizes,
with the estimated levels for GP.SIR being perhaps slightly better than thosé
for the other two tests. Table 11.5 shows simulations from (11.2) with predic-
tor distribution the same as that used in Table 11.3, where ¥; # ¥,. Again
the partial SIR test doesn’t do well because of its propensity to overestimate
the PCS. The two GP.SIR tests do reasonable well, and as in Table 11.4 the

version with estimated covariances tends to do the best.

Non-normal Cases

For non-normal cases we ran tests only with slice number A = 6. Table 11.6
gives simulation results for GP.SIR from using non-normal predictors in the
version of model (11.1) with X; # 3,. For the first two columns headed
x?(5) and x?(18), we used

Normal(0, 3,,)
"~ VDD

where the normal vector and chi-squared variable are independent and the

w ?

degrees of freedom D = 5 in the first column and D = 18 in the second. The
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Table 11.4: Estimated level in percent of nominal 1 and 5 percent tests
based on three versions of the statistic n£y with d = 2 for model (11.2) with

Y=%=L

Partial SIR | GP.SIR, %, | GPSIR, 3,
n |1 5 1 5 1 5

h =
100{01 1.2 (01 13 |02 27
20001 1.6 |01 14 |04 33
400 |04 32 |04 32 |09 42
800 |1.1 43 [11 42 |12 50
h=8
10000 1.5 (01 1.2 |05 3.1
200100 25 (00 18 |07 4.0
40002 33 |03 40 |07 44
80003 44 |03 39 |03 41
h =10
10001 1.1 |00 09 [03 29
20001 21 |03 19 |03 4.0
400 (06 38 |06 42 |09 49
800 |06 4.0 |07 41 |05 5.2
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Table 11.5: Estimated level in percent of nominal 1 and 5 percent tests
based on three versions of the statistic nFy with d = 2 for model (11.2) with
3 # .

Partial SIR | GP.SIR, &, | GP.SIR, 2,
n | 1 5 |1 5 1 5
h =
100 42 13502 1.3 |10 6.1
200 | 22.5 454 |05 33 |12 47
400 | 744 89.0 |04 34 |09 47
800993 998 {09 50 {09 5.1

100 | 3.7 14.2 { 0.1 1.3 0.7 5.0
200 | 30.9 56.9 | 0.6 3.4 0.8 5.4
400 | 88.2 96.4 | 0.8 4.3 0.8 5.7
800 | 100 100 | 0.6 9.2 1.2 5.6
h =10
100 | 4.7 158 | 0.2 1.4 1.0 5.2
200 {383 63.2 | 1.0 4.3 1.6 6.2
400 | 926 98.3 | 0.6 3.6 0.7 46
800 | 100 100 | 0.8 4.7 0.6 5.8
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last column labeled as “Uniform” has

where Z,, are independent Normal(0, I5) and U is an independent Uniform(0, 1).
The results in Table 11.6 are similar to the corresponding results for GP.SIR
in Tables 11.3 and 11.5, but a somewhat larger sample size might be needed

to obtain like agreement between the nominal and estimated levels.

Table 11.6: Estimated level in percent of nominal 1 and 5 percent test based

on nFy in GP.SIR with 3, for model (11.1).

x*(5) x*(18) | Uniform
n 1 5! 1 D 1 5
100 149 138 (3.6 12951 13.5
20033 11119 75 122 79
400 |14 88 |08 69 |18 6.0
800 |14 68 (1.2 72 14 5.9

Similarly, Table 11.7 gives simulation results for GP.SIR from using non-
normal predictors in the version of model (11.2) with 3; # ¥,. It is interest-
ing that GP.SIR has much lower actual levels than nominal ones in “Uniform”
case, which is associated with the intrinsic operation characteristic of inverse
regression estimation. It is usually difficult for SIR-type estimator to detect
quadratic terms in symmetric case. However, it can do better when the dis-

tribution of the predictor has heavier tails as in x2(5) or x%(18).
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Table 11.7: Estimated level in percent of nominal 1 and 5 percent test based

on nFy in GP.SIR with 2, for model (11.2).

x2(5) | x*(18) | Uniform

n 1 ) 1 ) 1 )
100 (21 83|12 6207 26
20016 66|14 6504 1.6
400 | 1.1 5907 4301 1.3
80009 5803 52|04 23

From this simulation study, it is clear that for heterogenous subpopula-

tions we definitely prefer general partial SIR over partial SIR. Since in ho-

mogeneous subpopulation, general partial SIR also does well, we recommend

using GP.SIR unless there is strong evidence supporting constant subpopu-

lation covariances.

11.2 Horse Mussels

In this section we consider a data set on New Zealand horse mussels. The

response is the mussel’s muscle mass, M. The p = 4 predictors in X are

the shell length, shell height H and the logarithms of shell mass and shell

width. The data, which were analyzed by Bura and Cook (2001b) in a

different dimension reduction context, consist of observations on 172 mussels

distributed across 5 collection sites represented by 58, 37, 37, 34, and 6
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cases. We exclude the site with only 6 mussels, leaving K = 4 levels of the
site indicator variable W. Table 11.8 shows the test statistics nﬁ‘m, degrees
of freedom or the trace of the sample version of Qs2Qe, p-values for partial
SIR and GP.SIR when h = 8 so each slice has around 14 observations. The p-
value for testing equality of 4 subpopulation covariance matrices is less than

10~1°. GP.SIR indicates only one direction 3, for the PCS, while partial

Table 11.8: Mussel Data

Partial SIR GP.SIR
NH:d=m | nF, DJF. p-alue| nF, Trace p-value
0 109.13 16 0 84.38 16 0
1 16.65 9 0.05 4.66 4.01 0.31
2 2.59 4 0.63 0.93 1.58 0.66

SIR indicates two important directions p, and p,. The correlation between
BTX and i)lTX is about 0.999 so partial SIR and GP.SIR find essentially
the same first direction. In view of the illustration in Section 9.5 and the
simulation results in Tables 11.3 and 11.5, we expect that the second partial
SIR direction is spurious, arising because of differences in the site covariance

~T
matrices. The summary plot of M versus 8, X is shown in Figure 11.1.
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M

Figure 11.1: Summary plot for the mussel data based on general partial
SIR. Locations are indicated by plotting symbol. The quadratic smooths are

provided as visual enhancements.



Future Research

In this thesis, we consider sufficient dimension reduction via the central di-
mension reduction subspace for regression in a single population. Under the
linearity condition, we have Span{E[Z|Y]} C Syz which connects dimension
reduction with inverse regression. We developed an MDA family of dimen-
sion reduction methods by a minimum discrepancy approach, which uses
quadratic inference functions constructed by linear combinations of sample
versions of E[Z|Y]. Within this MDA family, an efficient method—Optimal
IRE—is proposed. Optimal IRE is optimal within the MDA family in two
respects: the asymptotic efficiency for an estimated basis of the CS and
the asymptotic chi-squared distribution for test statistic for dimension. Is
Optimal IRE optimal globally among all estimating functions using sample

versions of E[Z]Y]? This needs further investigations.

The methods discussed in this thesis focus on extracting information
about the CS from the vector E[Z|Y]—the first moment of Z|Y. Under as-
sumptions of linearity and marginal covariance conditions we have Span(I —
3zy) C Syiz. Based on this statement, Cook and Weisberg (1991) pro-

posed another dimension reduction method—sliced average variance estima-
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tion (SAVE)— which extracts information from the second moments of Z[Y".
Cook and Yin (2001) proposed a permutation method for estimating the di-
mension using SAVE. However, no asymptotic properties have been obtained
for SAVE. The minimum discrepancy approach could be a key to a successful
development of asymptotic theories about SAVE. This could set a stage for

a unified approach to combine information from the first two moments.

For regression across multiple subpopulations, we developed a SIR-type
method—general partial SIR, which extends partial SIR by removing the
limiting condition of homogeneous subpopulation covariances. Therefore,
GP.SIR can be used in far more circumstances than partial SIR. However,
GP.SIR is not an optimal member of the MDA family as SIR is not in sin-
gle population case. The idea of developing optimal methods for multiple
subpopulations is straightforward based on the results in this thesis. More

computational issues may arise along this line.

Application to classification problems is one of the recent developments
in sufficient dimension reduction (Cook and Critchley 2000; Cook and Yin
2001). CCL illustrated the relation between the marginal central space
(which is the CS without knowledge of subpopulations) and the partial cen-
tral space, which opens a door for many applications. Dimension reduction

methods like GP.SIR are very useful tools in this promising research field.



Appendix A

Notation

Definition 1. For any matriz real A, P is the orthogonal projection oper-
ator on the space spanned by the columns of A, Span{A}; Qa =1 — Py is
the projection operator on the space orthogonal to Span{A}, where I is the

identity matric.

Definition 2. The Kronecker product “Q7” is defined as a matriz operator.

Suppose A is an m x n matriz with a;; being the ij-th element, B is a k x [

matriz. Then,

anB apB -+ a,B

a21B axB -+ ay,B
A®B = 2% 2? 2’!'-1, ’

am1B amB - ap,B

an mk x nl matriz.

130
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Properties of Projection and Kronecker Product

1. Let [A, B] be the matrix that combines the columns of matrices A and

B.

e For any matrices A € R*™, B € R, and C € R**™,
Qa,B] = Qa-BC,B- (A1)
e If Span{A} is orthogonal to Span{B}, then
QaB = QaQr = QpQa. (A.2)

2. rank(A ® B) = rank(A) - rank(B).
Proof: Suppose A and B have singular value decompositions as A =
I'1AT2 and B = T5ATy. Then, A® B = (I';; @ T'y)(A; @
A2)(T12 ® Typ).

3. Pagn = Pa ® Pg.
Proof: PA®Pg = (A(ATA)-AT)®(B(BTB)-B”) = (A®B)((ATA)-AT®
(BTB)"B”). Thus Span{Ps ® P} C Span{A ® B}. On the other
hand, (P4 ® Pg)(A ® B)=(A ® B), thus Span{A ® B} C Span{P, ®
Pg}.

Qass =Pa®Qe+Qa®I=1I0Qp+Qa®Pp (A.3)

Thus, if A € R™*™ is full rank, Qags = I® Qp; if B € R**" is full
rank, Qags = Qa ® L
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Proof:

QA®B = I—PA®B
(Pa+Qa)® (P +Qg) — Pags
= PA®QB+QA®PB+QAV®QB

5. For any matrices A € R*™ B € R*", C € R*®, and D € R™, if
Span{A} and Span{C} are orthogonal or Span{B} and Span{D} are

orthogonal, then

Qags(C®D)=C®D.

Proof:
When Span{A} and Span{C} are orthogonal,

Qage(C®D) = (I®QB)(C®D)+(Qa®P)(Ce®D)
= C®QgD+C®PgD
= C®D.

Similarly, we can prove the statement when Span{B} and Span{D}

are orthogonal.

Definition 3. Let a; be the i-th column of a matriz A € R™". A matriz

operator vec(-) constructs a vector by stacking columns of a matriz such that
vec(A) = (af,al,---,al)T.

n

One important property of vec(-) is that

vec(ABC) = (CT ® A) vec(B). (A.4)
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Definition 4. For any two n X n semi-positive definite matrices A and B,

if A — B is semi-positive definite matriz, then we call A > B. The equality
holds when A = B.

Definition 5. For any semi-positive matriz A, A is a matriz such that

(Az)T = A2 and A7A? = A.

Definition 6. Suppose A; is an n; x n; dimensional matriz, i =1,2,..., k.

Letn = Y% n;. Define
Ay

diag{A} =

L A

an n X n dimenstonal block diagonal matriz.

Definition 7. Suppose A; is an n; X m dimensional matriz, 1 = 1,2,... k.

Letn =Y n,;. Define

stack{A;} =

an n X m dimensional matriz.



Appendix B

Lemmas for Optimization

Lemma 5. Suppose A = Zyzl a;al with a spectral decomposition UAUT,
where a; € R?, A = diag{\;}, and U = (u, o, ..., p,) are its eigenvectors
corresponding to eigenvalues Ay > Ay > ... > A, > 0. Let Ky, = D % A

= j=m+1 V37
m=0,1,...,p— 1. Then,

n

K = min a; — Bv,) (a; — B,
™ ﬂER”x"’v'}'iERm ;( 71) ( 72)

and Span{B} = Span{u,, iy, ..., u,,}. Here B is the value of B that mini-
mizes 3o (ai — Bv) (25 — B)-
Proof: Given B, let s(8) = miny cg= Y1 (a; — Bv,)T(a; — Bv,)- It is

easy to see that

sB) = > aQpa
=1

= trace(Qg Z a;al)
=1
= trace((I—-Pg)A)

= trace(A) — trace(PgA)
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Thus, minimizing s(8) is equivalent to maximizing trace(PgA). Without

loss of generality, assume BT B =1,,. Therefore,
trace(PgA) = trace(PgAPg)
= trace(BTUAUTB)

= trace(AUTBBTU).

We have UTBBTU < UTU =1, and trace(UTB8B7U) = trace(8TUUTR) =
trace(I,,) = m. Suppose {di,...,d,} are the diagonal elements of UT @37 U.
Then, alld; <1,¢=1,...,p, and Y 7_, d; = m. Therefore,

P m
trace(PgA) = Z Z i
The equality holds only if UTBBTU = diag{I,, 0}. Then,
Pg = BA" = Udiag({1,,,0}U" = > p;p].

i=1

Lemma 6. Consider the function

M:

- CJS b Cijb)

]:l
where ¢; € R, v; € R? , and S; € RP*P is a nonsingular matriz, j =
<h. Allcj, v, and S; are fized. Here b € RP and ||b]| = 1. With the

constraint that b is orthogonal to Span{L}, where L € RPX™ the argument

that minimizes f(b) is
b =Wl - LILTW; L) LW, ' |W..

wher@ Wl = Z?:l CJSZ—"Y] and WQ = Z 2STS

7111
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Proof: The minimization with the constraint is equivalent to minimizing

the function

h
k(g) = Z(’}’j - CijQLg)T('Yj - CJ'SjQLg)

J=1
where g € R™ and Qg is the projection on the orthogonal complement of

Span{L}. Immediately, we see that k(g) is the sum of squared residuals from

a multivariate ordinary least square fit,

g = arg, mink(g) = (QLW:Qr) " QLW,

and

b = Qg
= QL(QW.QL) QLW;
= W, W;Qu(QuW;W;Qu) QuWiW; *W,
_ Wfﬁpwémwgfw1
_ W;%QW;%LWQ_%VW (B.1)
= W, - W, LILTW; L) LW, {|W; 'W,

= W;UI-LELTW; L) LTW;  W,.

We know that (W2Qr)"W, L = 0 and that rank(Wé Qr)+rank(W, %L) =
p. Therefore, PW1 + Pw"% = I, and the equality in (B.1) holds.

gQL 2L
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